Lecture 14 Graph Theory and Circuit Analysis

- Basic Concepts of Graph Theory
- Cut-set
- Incidence Matrix
- Circuit Matrix
- Cut-set Matrix

Definition of Graph

Definition: In a connected graph G of *n* nodes (vertices), the subgraph T that satisfies the following properties is called a tree.
T is connected
T contains all the vertices of G
T contains no circuit,

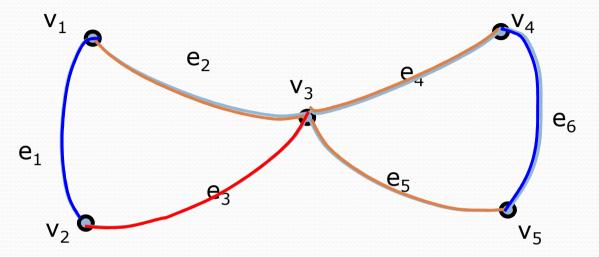
≻T contains exactly *n*-1 number of edges.

In every connected graph G there exists at least one tree.

Tree & Co-tree

- Let G have p separated parts $G_1, G_2, ..., G_p$, that is $G=G_1 \cup G_2 \cup ... \cup G_p$, and let T_i be a tree in G_i , i=1,2,...,p, then, $T=T_1 \cup T_2 ... \cup T_p$ is called a forest of G.
- DEFINITION: The complement of a tree is called a co-tree and the complement of a forest is called a co-forest. The edges of a tree or a forest are called branches and the edges of a co-tree or co-forest are called links (chords).

Tree & Co-tree Examples



9 possible trees and corresponding co-trees:

$$T_{1} = \{e_{2}, e_{3}, e_{4}, e_{5}\} \qquad T_{4} = \{e_{1}, e_{2}, e_{5}, e_{6}\} \qquad T_{7} = \{e_{2}, e_{3}, e_{5}, e_{6}\}$$
$$T_{1}' = \{e_{1}, e_{6}\} \qquad T_{4}' = \{e_{3}, e_{4}\} \qquad T_{7}' = \{e_{1}, e_{4}\}$$
$$T_{2} = \{e_{1}, e_{2}, e_{4}, e_{6}\} \qquad T_{5} = \{e_{1}, e_{3}, e_{4}, e_{6}\} \qquad T_{8} = \{e_{1}, e_{2}, e_{4}, e_{5}\}$$
$$T_{2}' = \{e_{3}, e_{5}\} \qquad T_{5}' = \{e_{2}, e_{5}\} \qquad T_{8}' = \{e_{3}, e_{6}\}$$
$$T_{3} = \{e_{1}, e_{3}, e_{5}, e_{6}\} \qquad T_{6} = \{e_{2}, e_{3}, e_{4}, e_{6}\} \qquad T_{9} = \{e_{1}, e_{3}, e_{4}, e_{5}\}$$
$$T_{4}' = \{e_{2}, e_{4}\} \qquad T_{6}' = \{e_{1}, e_{5}\} \qquad T_{9}' = \{e_{2}, e_{6}\}$$

Rank & Nullity

- DEFINITION: Let G be a graph and let b and l be respectively the number of branches and chords of G, then b and l are called respectively the rank and the nullity of the graph.
- **THEOREM**: Let G have *n* nodes, *e* edges and *p* connected parts, then its rank and nullity are given respectively by

$$b = n - p$$

and
$$l = e - n + p$$

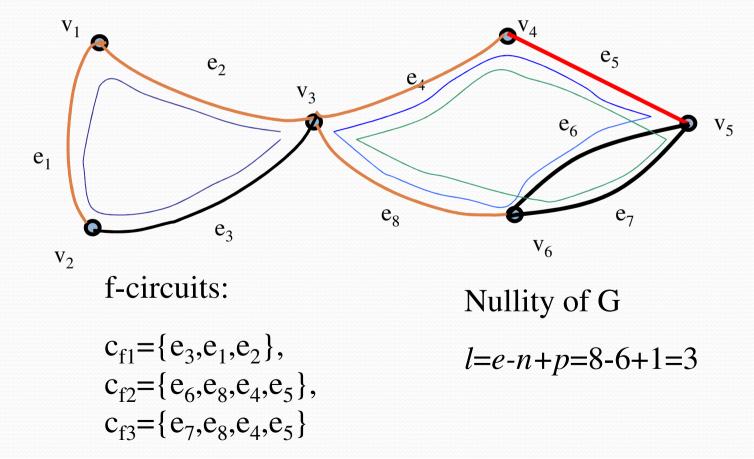
Fundamental Circuit (f-circuit)

DEFINITION: Let G be a connected graph and let T and T' be tree and co-tree respectively, that is $G=T\cup T'$. Let a link e' $\subset T'$ and its unique tree path (a path which is formed by the branches of T) define a circuit. This circuit is called the fundamental circuit (f-circuit) of G. All such circuits defined by all the chords of T' are called the fundamental circuits (f-circuits) of G. If G is not connected, then the f-circuits are defined with respect to a forest.

-circuit Example

• Note that the number of f-circuits is given by the nullity of G and that, with respect to a chosen tree T of G, each f-circuit contains one and only link.

Consider the following graph

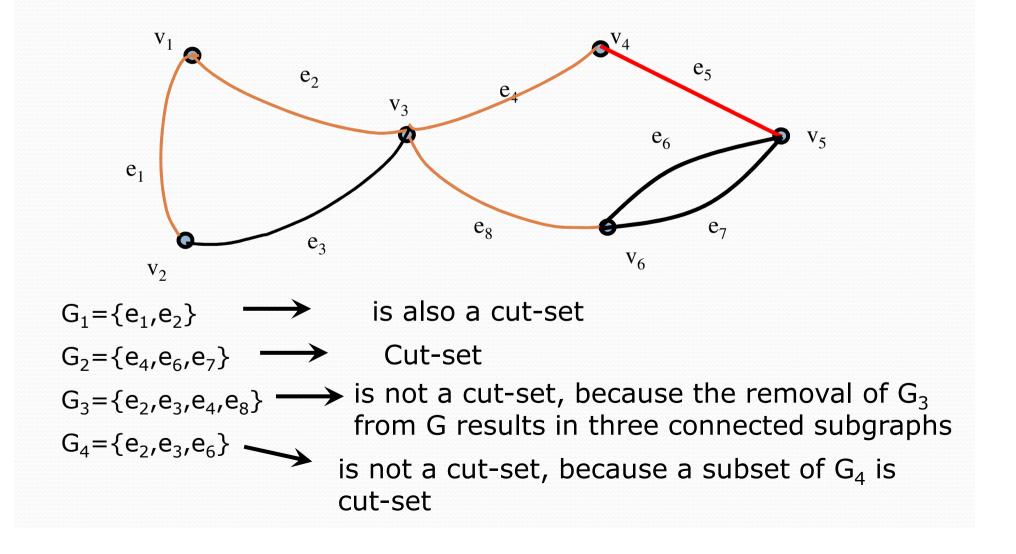


Cut-Set

- **DEFINITION**: The cut-set of a graph G is the subgraph G_x of G consisting of the set of edges satisfying the following properties:
 - The removal of G_x from G reduces the rank of G exactly by one.
 - No proper subgraph of G_x has this property.
 - If G is connected, then the first property in the above definition can be replaced by the following phrase.
 - The removal of G_x from G separates the given connected graph G into exactly two connected subgraphs.

Cut-set example

Consider the following graph and the following set of edges

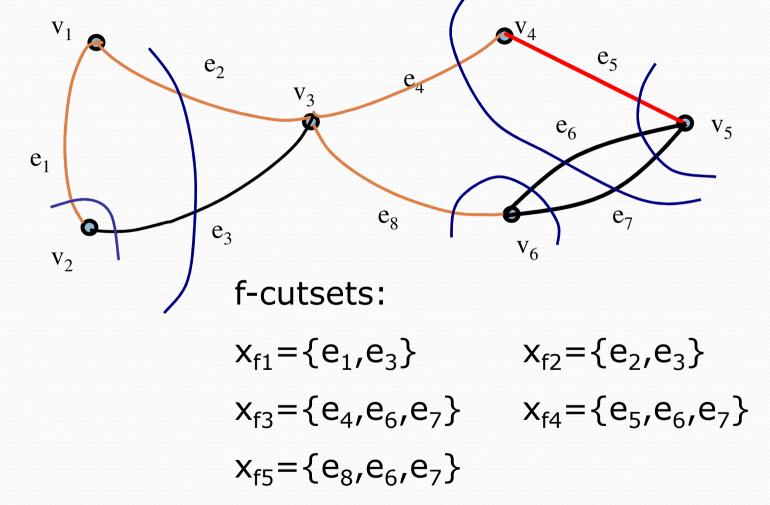


Fundamental cut-set (f-cutset)

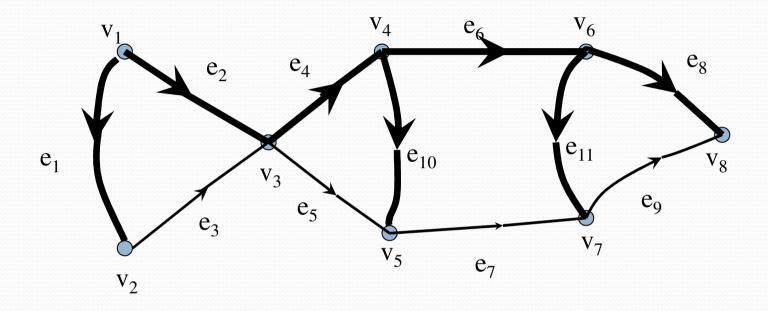
- DEFINITION: Let G be a connected graph and let T be its tree. The branch e_t⊆T defines a unique cut-set (a cut-set which is formed by e_t and the links of G). This cut-set is called the fundamental cut-set (f-cutset) of G. All such cut-sets defined by all the branches of T are called the fundamental cut-sets (f-cutsets) of G. If G is not connected then the f-cut sets are defined with respect to a forest.
- Note that the number of fundamental cut-sets is given by the rank of G and with respect to a chosen tree T of G, each fundamental cut-set contains one and only one branch.

f-cutset example

Consider the following graph with $T = \{e_1, e_2, e_4, e_5, e_8\}$



Matrices of Directed Graphs



- The edge e₁ which has a direction from node v₁ to node v₂ simply indicates that any transmission from v₁ to v₂ along e₁ is assumed to be positive.
- Any transmission from v₂ to v₁ along e₁ is assumed to be negative.

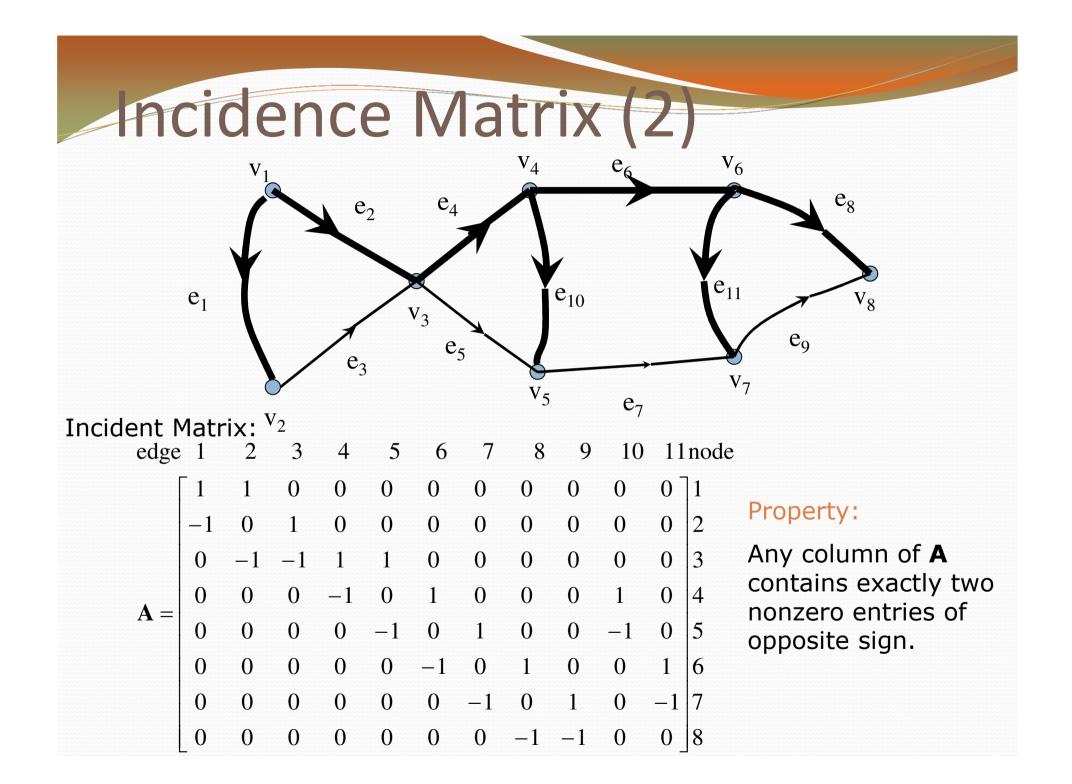
Incidence Matrix

• **DEFINITION**: Let *e* and *n* represent respectively the number of edges and nodes of a graph G. The **incidence matrix**

$$\mathbf{A}_{a} = [a_{ij}]$$

having *n* rows and *e* columns with its elements are defined as

 $a_{ij} = \begin{cases} 1 & \text{if edge } j \text{ incident to node } i \text{ and oriented "outward"} \\ -1 & \text{if edge } j \text{ incident to node } i \text{ and oriented "inward"} \\ 0 & \text{if edge } j \text{ not incident to node } i \end{cases}$



Reduced Incidence Matrix

- DEFINITION: For a connected graph G, the matrix A, obtained by deleting any one of the rows of the incidence matrix A_a is called the reduced incidence matrix.
- Note that since any column of A_a contains exactly two nonzero entries of opposite sign, one can uniquely determine the incident matrix when the reduced incident matrix is given.
- Note also that the rank of **A**_a is *n*-1.

Circuit Matrix

• In a graph G, let *k* be the number of circuits and let an arbitrary circuit orientation be assigned to each one of these circuits.

•**DEFINITION**: The circuit matrix

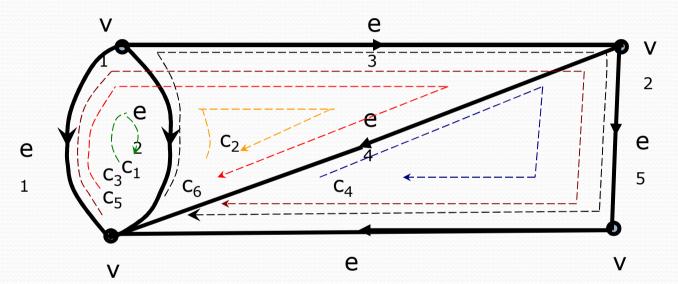
$$\mathbf{B}_{x \times e} = [b_{ij}]$$

for a graph G of *e* edges and *k* circuits is defined as

 $b_{ij} = \begin{cases} 1 & \text{if edge } j \text{ incident to circuit } i \text{ with "same" orientation} \\ -1 & \text{if edge } j \text{ incident to circuit } i \text{ with "opposite" orientation} \\ 0 & \text{if edge } j \text{ not incident to circuit } i \end{cases}$

4

• Consider the following graph



6 $e_2 e_3$ e_6 e_1 $e_4 e_5$ 0 0 0 -1 0 C_1 1 0 0 0 1 C_2 0 **B** = 0 1 1 0 -1 C_3 1 ' 0 0 -1 1 0 C_4 1 0 1 1 0 -1 C_5 0 -11 0 C_6 1

3

f-Circuit Matrix

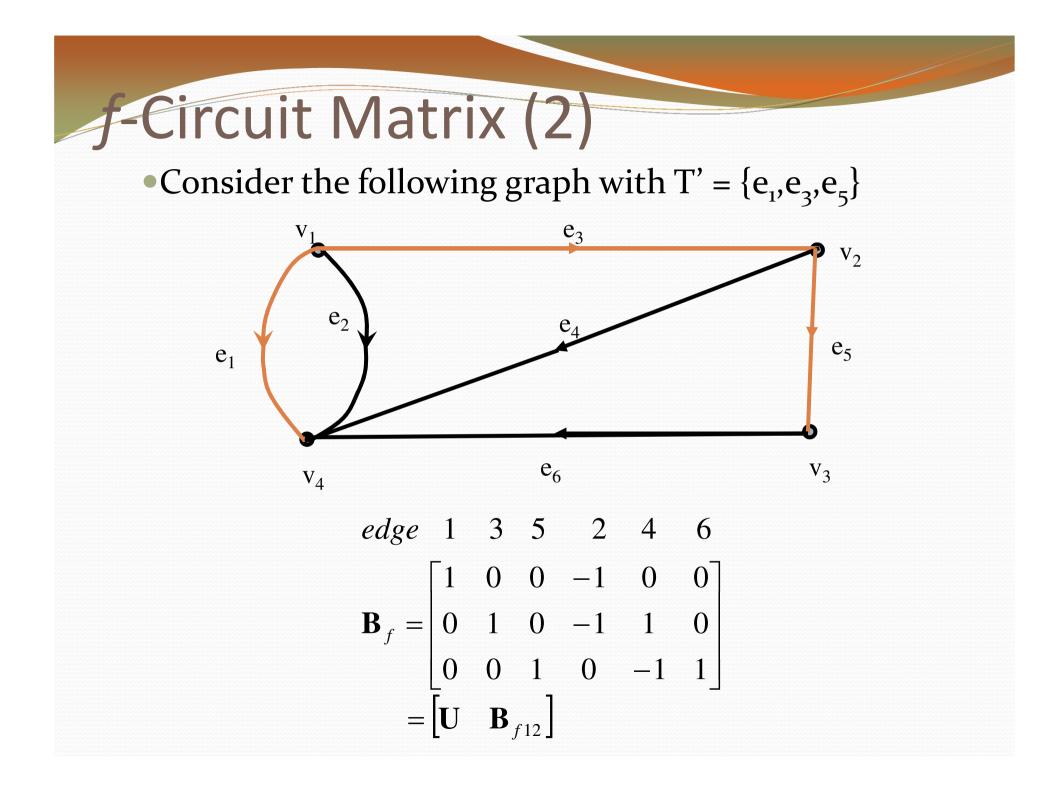
• Let **b**_i represent the row of **B** that corresponds to circuit c_i. The circuits c_i,...,c_j are independent if the rows **b**_i,... **b**_j are independent.

• **DEFINITION:** The f-circuit matrix \mathbf{B}_{f} of a graph G with respect to some tree T is defined as the circuit matrix consisting of the fundamental circuits of G only whose orientations are chosen in the same direction as that of defining links.

• The fundamental circuit matrix $\mathbf{B}_{\mathbf{f}}$ of a graph G with respect to some tree T can always be written as

$$\mathbf{B}_{f} = [\mathbf{U} \ \mathbf{B}_{f12}]$$

$$l \times e$$



• THEOREM: If the column orderings of the circuit and incident matrices are identical then \mathbf{P}^T

$$\mathbf{A}_{a}\mathbf{B}_{f}^{T}=\mathbf{0}$$

$$\mathbf{B}_{f}\mathbf{A}_{a}^{T} = \mathbf{0}$$

Also

$$\mathbf{A}_{a}\mathbf{B}^{T} = \mathbf{0}$$

$$\mathbf{B}\mathbf{A}_{a}^{T} = \mathbf{0}$$

Matrices of Oriented Graphs • Consider the following graph e_3 V_2 C₂ e₅ e_1 e_6 V₃ v_4 edge 1 3 5 2 4 6 $\mathbf{B}_{f} = \begin{bmatrix} 1 & 3 & 5 & 2 & 4 & 6 \\ 1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & 0 & -1 & 1 \end{bmatrix}; \quad \mathbf{A}_{a} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 & 0 & 1 \\ -1 & 0 & 0 & -1 & -1 & -1 \end{bmatrix}$

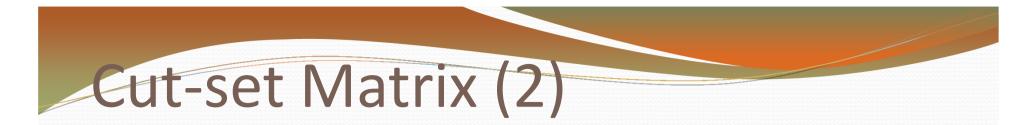
Cut-set Matrix

- In a graph G let x be the number of cut-sets having arbitrary orientations. Then, we have the following definition.
- •DEFINITION: The cut-set matrix

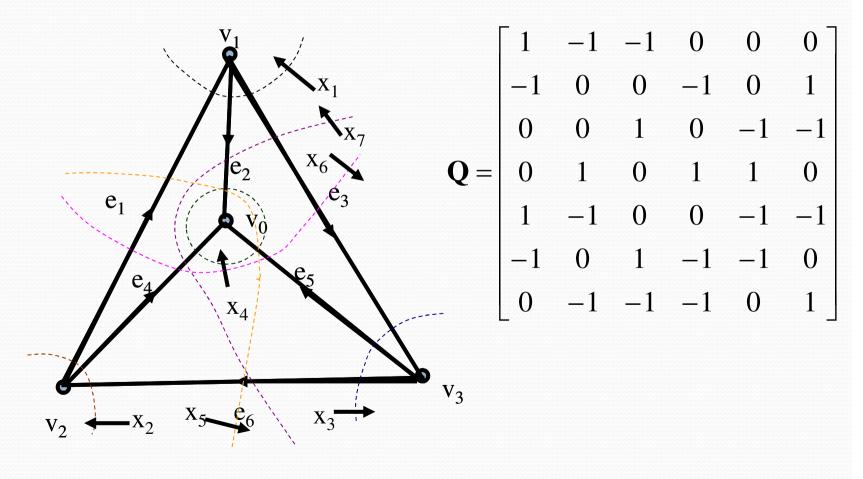
$$\mathbf{Q} = [q_{ij}]$$

for a graph G of *e* edges and *x* cut-sets is defined as

 $q_{ij} = \begin{cases} 1 & \text{if edge } j \text{ in cut - set } i \text{ with } e_j, x_i \text{ "same" orientation} \\ -1 & \text{if edge } j \text{ in cut - set } i \text{ with } e_j, x_i \text{ "opposite" orientation} \\ 0 & \text{if edge } j \text{ not in cut - set } i \end{cases}$



• Consider the following graph and its seven possible cut-sets



f-Cut-set Matrix

• **DEFINITION:** The f-cutset matrix Q_f of a graph G with respect to some tree T is defined as the cut-set matrix consisting of the fundamental cut-set of G only whose orientations are chosen in the same direction as that of defining branches.

•The fundamental cut-set matrix A_f of a graph G with respect to some tree T can always be written as

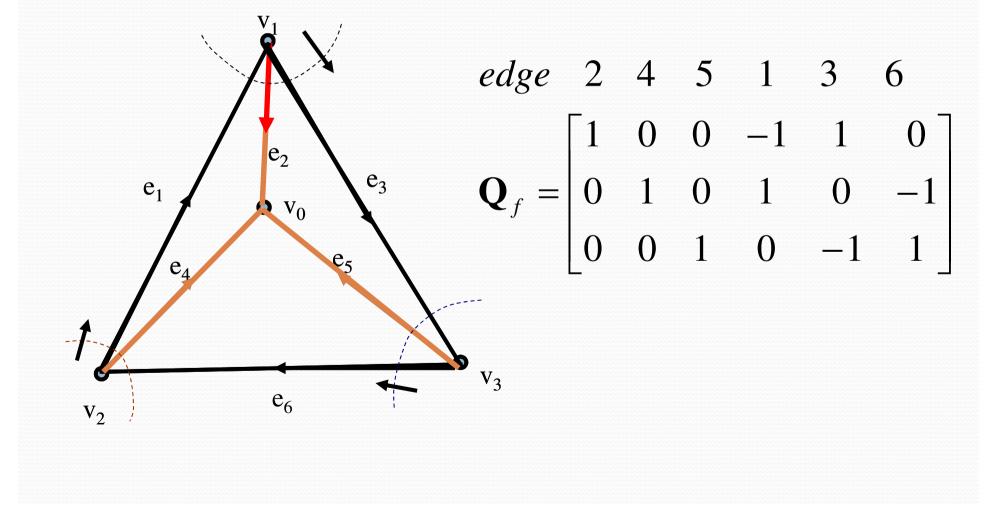
$$\mathbf{Q}_{f} = \begin{bmatrix} \mathbf{U} & \mathbf{Q}_{f11} \end{bmatrix}$$

b×e b×b b×(e-b)

• Recall that b = n-1

f-Cut-set Matrix (2)

• Consider the following graph with $T = \{e_2, e_4, e_5\}$



Cut-set & Circuit Matrices

• THEOREM: If the column orderings of the circuit and incident matrices are identical then

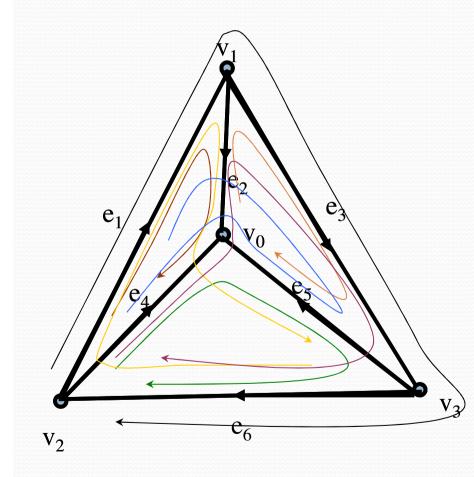
$$\mathbf{Q}\mathbf{B}_{f}^{T} = \mathbf{0}$$
$$\mathbf{B}_{f}\mathbf{Q}^{T} = \mathbf{0}$$

$$\mathbf{Q}\mathbf{B}^T = \mathbf{0}$$

$$\mathbf{B}\mathbf{Q}^T = \mathbf{0}$$

Cut-set & Circuit Matrices

• Consider the following graph



[1		-1	-1	0	0	0	
	1	0	0	-1	0	1	
$\mathbf{Q} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$		0	1	0	-1	-1	
		1	0	1	1	0	
1		-1	0	0	-1	-1	
	1	0	1	-1	-1	0	
)	-1	-1	-1	0	1	
	0	0	0	1	-1	1]	
	1	1	0	-1	0	0	
		-1	1	0	1	0	
B =	1	1	0	0	-1	1	
	0	-1	1	1	0	1	
	1	0	1	-1	1	0	
	_1	0	1	0	0	1	
		$ \begin{array}{c} -1 \\ 0 \\ 0 \\ 1 \\ -1 \\ 0 \end{array} $	$ \begin{array}{cccc} -1 & 0 \\ 0 & 0 \\ 0 & 1 \\ 1 & -1 \\ -1 & 0 \\ 0 & -1 \end{array} $	$\begin{array}{cccc} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & -1 \end{array}$	$\begin{bmatrix} 1 & -1 & -1 & 0 \\ -1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & -1 & 0 & 0 \\ -1 & 0 & 1 & -1 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \\ \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & -1 \\ 0 & -1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 1 \\ 1 & 0 & 1 & -1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

FUNDAMENTAL POSTULATES

•Now, Let G be a connected graph having e edges and let

$$\mathbf{x}^{T} = \left[x_{1}(t), x_{2}(t), \cdots x_{e}(t) \right]$$

and

$$\mathbf{y}^{T} = \left[y_{1}(t), y_{2}(t), \cdots, y_{e}(t) \right]$$

be two vectors where x_i and y_i , i=1,...,e, correspond to the across and through variables associated with the edge *i* respectively.

FUNDAMENTAL POSTULATES

•2. POSTULATE Let **B** be the circuit matrix of the graph G having e edges then we can write the following algebraic equation for the across variables of G (e.g., edge voltage)

$\mathbf{B}\mathbf{x} = \mathbf{0} \Longrightarrow \mathbf{K}\mathbf{V}\mathbf{L}$

•3. POSTULATE Let **Q** be the cut-set matrix of the graph G having e edges then we can write the following algebraic equation for the through variables of G (e.g., edge current)

$$\mathbf{Q}\mathbf{y} = \mathbf{0} \Longrightarrow \mathrm{KCL}$$

 Consider a graph G and a tree T in G. Let the vectors v and i partitioned as

Fundamental Circuit & Cut-set Equations

$$\mathbf{v} = [\mathbf{v}_{link} \ \mathbf{v}_{branch}]^T; \mathbf{i} = [\mathbf{i}_{branch} \ \mathbf{i}_{link}]^T$$

Then

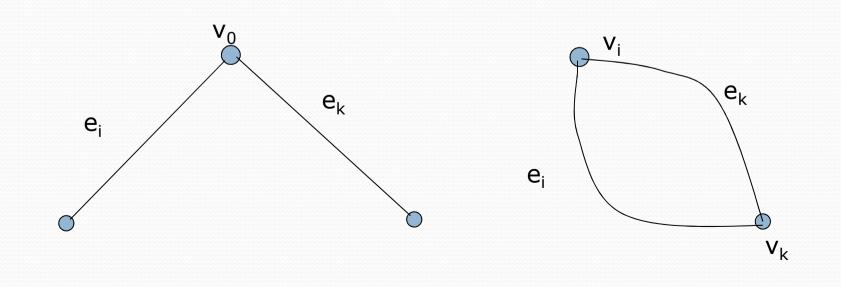
$$\mathbf{B}_{f}\mathbf{v} = \begin{bmatrix} \mathbf{U} \ \mathbf{B}_{f12} \begin{bmatrix} \mathbf{v}_{link} \\ \mathbf{v}_{branch} \end{bmatrix} = \mathbf{0} \quad \mathbf{Q}_{f}\mathbf{i} = \begin{bmatrix} \mathbf{U} \ \mathbf{Q}_{f11} \begin{bmatrix} \mathbf{i}_{branch} \\ \mathbf{i}_{link} \end{bmatrix} = \mathbf{0}$$
$$\mathbf{v}_{link} = -\mathbf{B}_{f12}\mathbf{v}_{branch} \quad \mathbf{i}_{branch} = -\mathbf{Q}_{f11}\mathbf{i}_{link}$$

fundamental circuit equation

fundamental cut-set equation

Series & Parallel Edges

- Definition: Two edges e_i and e_k are said to be connected in series if they have exactly one common vertex of degree two.
- Definition: Two edges e_i and e_k are said to be connected in parallel if they are incident at the same pair of vertices v_i and v_k.



General Procedure

- 1. Draw a graph and then identify a tree.
- 2. Place all control-voltage branches for voltagecontrolled dependent sources in the tree, if possible.
- 3. Place all control-current branches for current-controlled dependent sources in the cotree, if possible.
- 4. Find incidence, f-circuit, or f-cutset matrix.
- 5. Replace voltage, current sources with short, open circuits, respectively.
- 6. Formulate the matrix equation.