Lecture 14
Graph Theory and Circuit Analysis

- Basic Concepts of Graph Theory
- Cut-set
- Incidence Matrix
- Circuit Matrix
- Cut-set Matrix
Definition: In a connected graph G of n nodes (vertices), the subgraph T that satisfies the following properties is called a tree.

- T is connected
- T contains all the vertices of G
- T contains no circuit,
- T contains exactly $n-1$ number of edges.

In every connected graph G there exists at least one tree.
Let G have p separated parts $G_1, G_2, ..., G_p$, that is $G = G_1 \cup G_2 \cup ... \cup G_p$, and let T_i be a tree in G_i, $i=1,2,...,p$, then, $T = T_1 \cup T_2 ... \cup T_p$ is called a forest of G.

DEFINITION: The complement of a tree is called a co-tree and the complement of a forest is called a co-forest. The edges of a tree or a forest are called branches and the edges of a co-tree or co-forest are called links (chords).
Tree & Co-tree Examples

9 possible trees and corresponding co-trees:

\[
\begin{align*}
T_1 &= \{e_2, e_3, e_4, e_5\} & T_4 &= \{e_1, e_2, e_5, e_6\} & T_7 &= \{e_2, e_3, e_5, e_6\} \\
T_1' &= \{e_1, e_6\} & T_4' &= \{e_3, e_4\} & T_7' &= \{e_1, e_4\} \\
T_2 &= \{e_1, e_2, e_4, e_6\} & T_5 &= \{e_1, e_3, e_4, e_6\} & T_8 &= \{e_1, e_2, e_4, e_5\} \\
T_2' &= \{e_3, e_5\} & T_5' &= \{e_2, e_5\} & T_8' &= \{e_3, e_6\} \\
T_3 &= \{e_1, e_3, e_5, e_6\} & T_6 &= \{e_2, e_3, e_4, e_6\} & T_9 &= \{e_1, e_3, e_4, e_5\} \\
T_4' &= \{e_2, e_4\} & T_6' &= \{e_1, e_5\} & T_9' &= \{e_2, e_6\}
\end{align*}
\]
DEFINITION: Let G be a graph and let b and l be respectively the number of branches and chords of G, then b and l are called respectively the rank and the nullity of the graph.

THEOREM: Let G have n nodes, e edges and p connected parts, then its rank and nullity are given respectively by

\[
b = n - p
\]

and

\[
l = e - n + p
\]
DEFINITION: Let G be a connected graph and let T and T' be tree and co-tree respectively, that is $G = T \cup T'$. Let a link $e' \subseteq T'$ and its unique tree path (a path which is formed by the branches of T) define a circuit. This circuit is called the **fundamental circuit (f-circuit)** of G. All such circuits defined by all the chords of T' are called the fundamental circuits (f-circuits) of G. If G is not connected, then the f-circuits are defined with respect to a forest.
f-circuit Example

- Note that the number of f-circuits is given by the nullity of G and that, with respect to a chosen tree T of G, each f-circuit contains one and only link.

Consider the following graph

f-circuits:

$c_{f1} = \{e_3, e_1, e_2\}$,
$c_{f2} = \{e_6, e_8, e_4, e_5\}$,
$c_{f3} = \{e_7, e_8, e_4, e_5\}$

Nullity of G

$l = e - n + p = 8 - 6 + 1 = 3$
DEFINITION: The cut-set of a graph G is the subgraph G_x of G consisting of the set of edges satisfying the following properties:

- The removal of G_x from G reduces the rank of G exactly by one.
- No proper subgraph of G_x has this property.

If G is connected, then the first property in the above definition can be replaced by the following phrase.

- The removal of G_x from G separates the given connected graph G into exactly two connected subgraphs.
Consider the following graph and the following set of edges

- $G_1 = \{e_1, e_2\}$ is also a cut-set
- $G_2 = \{e_4, e_6, e_7\}$ is a cut-set
- $G_3 = \{e_2, e_3, e_4, e_8\}$ is not a cut-set, because the removal of G_3 from G results in three connected subgraphs
- $G_4 = \{e_2, e_3, e_6\}$ is not a cut-set, because a subset of G_4 is cut-set
DEFINITION: Let G be a connected graph and let T be its tree. The branch $e_t \subseteq T$ defines a unique cut-set (a cut-set which is formed by e_t and the links of G). This cut-set is called the fundamental cut-set (f-cutset) of G. All such cut-sets defined by all the branches of T are called the fundamental cut-sets (f-cutsets) of G. If G is not connected then the f-cut sets are defined with respect to a forest.

- Note that the number of fundamental cut-sets is given by the rank of G and with respect to a chosen tree T of G, each fundamental cut-set contains one and only one branch.
f-cutset example

Consider the following graph with $T=\{e_1,e_2,e_4,e_5,e_8\}$

f-cutsets:

$x_{f1}=\{e_1,e_3\} \quad x_{f2}=\{e_2,e_3\}$

$x_{f3}=\{e_4,e_6,e_7\} \quad x_{f4}=\{e_5,e_6,e_7\}$

$x_{f5}=\{e_8,e_6,e_7\}$
• The edge e_1 which has a direction from node v_1 to node v_2 simply indicates that any transmission from v_1 to v_2 along e_1 is assumed to be positive.

• Any transmission from v_2 to v_1 along e_1 is assumed to be negative.
DEFINITION: Let e and n represent respectively the number of edges and nodes of a graph G. The incidence matrix

$$A_a = [a_{ij}]_{n \times e}$$

having n rows and e columns with its elements are defined as

$$a_{ij} = \begin{cases}
1 & \text{if edge } j \text{ incident to node } i \text{ and oriented "outward"} \\
-1 & \text{if edge } j \text{ incident to node } i \text{ and oriented "inward"} \\
0 & \text{if edge } j \text{ not incident to node } i
\end{cases}$$
Incidence Matrix:

Property:

Any column of \(A \) contains exactly two nonzero entries of opposite sign.
Reduced Incidence Matrix

- **DEFINITION**: For a connected graph G, the matrix A, obtained by deleting any one of the rows of the incidence matrix A_a is called the *reduced incidence matrix*.

- Note that since any column of A_a contains exactly two nonzero entries of opposite sign, one can uniquely determine the incident matrix when the reduced incident matrix is given.

- Note also that the rank of A_a is $n-1$.
In a graph G, let k be the number of circuits and let an arbitrary circuit orientation be assigned to each one of these circuits.

DEFINITION: The circuit matrix

$$B = \begin{bmatrix} b_{ij} \end{bmatrix}_{k \times e}$$

for a graph G of e edges and k circuits is defined as

$$b_{ij} = \begin{cases}
1 & \text{if edge } j \text{ incident to circuit } i \text{ with "same" orientation} \\
-1 & \text{if edge } j \text{ incident to circuit } i \text{ with "opposite" orientation} \\
0 & \text{if edge } j \text{ not incident to circuit } i
\end{cases}$$
Consider the following graph

\[
\begin{bmatrix}
-1 & 1 & 0 & 0 & 0 & 0 \\
0 & -1 & 1 & 1 & 0 & 0 \\
-1 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 & 1 & 1 \\
-1 & 0 & 1 & 0 & 1 & 1 \\
0 & -1 & 1 & 0 & 1 & 1 \\
\end{bmatrix}
\]
\textbf{f-Circuit Matrix}

- Let b_i represent the row of B that corresponds to circuit c_i. The circuits c_i, \ldots, c_j are independent if the rows $b_i, \ldots b_j$ are independent.

- **DEFINITION:** The \textit{f-circuit matrix} B_f of a graph G with respect to some tree T is defined as the circuit matrix consisting of the fundamental circuits of G only whose orientations are chosen in the same direction as that of defining links.

- The fundamental circuit matrix B_f of a graph G with respect to some tree T can always be written as

$$B_f = [U \ B_{f12}]_{l \times e}$$
Consider the following graph with $T' = \{e_1, e_3, e_5\}$

\[
\mathbf{B}_f = \begin{bmatrix}
1 & 0 & 0 & -1 & 0 & 0 \\
0 & 1 & 0 & -1 & 1 & 0 \\
0 & 0 & 1 & 0 & -1 & 1 \\
\end{bmatrix}
\]

= $[U \quad \mathbf{B}_{f12}]$
THEOREM: If the column orderings of the circuit and incident matrices are identical then

\[A_a B_f^T = 0 \]

\[B_f A_a^T = 0 \]

Also

\[A_a B^T = 0 \]

\[B A_a^T = 0 \]
Matrices of Oriented Graphs

Consider the following graph

\[
\begin{bmatrix}
1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & -1 & 0 & 0 & 1 & 1 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 1 & 0 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 & 1 & 0 \\
0 & 0 & -1 & 0 & 0 & 1 \\
-1 & 0 & 0 & -1 & -1 & -1 \\
\end{bmatrix}
\]
In a graph G let x be the number of cut-sets having arbitrary orientations. Then, we have the following definition.

DEFINITION: The cut-set matrix

$$Q = \begin{bmatrix} q_{ij} \end{bmatrix}_{x \times e}$$

for a graph G of e edges and x cut-sets is defined as

$$q_{ij} = \begin{cases} 1 & \text{if edge } j \text{ in cut-set } i \text{ with } e_j, x_i \text{ "same" orientation} \\ -1 & \text{if edge } j \text{ in cut-set } i \text{ with } e_j, x_i \text{ "opposite" orientation} \\ 0 & \text{if edge } j \text{ not in cut-set } i \end{cases}$$
Consider the following graph and its seven possible cut-sets

$$Q = \begin{bmatrix}
1 & -1 & -1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & -1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & -1 & -1 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & -1 & 0 & 0 & -1 & -1 & 0 \\
-1 & 0 & 1 & -1 & -1 & 0 & 1 \\
0 & -1 & -1 & -1 & 0 & 1 & 1
\end{bmatrix}$$
f-Cut-set Matrix

- **DEFINITION:** The f-cutset matrix Q_f of a graph G with respect to some tree T is defined as the cut-set matrix consisting of the fundamental cut-set of G only whose orientations are chosen in the same direction as that of defining branches.

- The fundamental cut-set matrix A_f of a graph G with respect to some tree T can always be written as

$$Q_f = \begin{bmatrix}
U & Q_{f_{11}} \\
\times b & \times (e-b)
\end{bmatrix}$$

- Recall that $b = n-1$
Consider the following graph with $T = \{e_2, e_4, e_5\}$

$$Q_f = \begin{bmatrix} 1 & 0 & 0 & -1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 & -1 & 1 \end{bmatrix}$$
THEOREM: If the column orderings of the circuit and incident matrices are identical then

\[\mathbf{Q}_f \mathbf{B}_f^T = 0 \]

Also

\[\mathbf{B}_f \mathbf{Q}^T = 0 \]

\[\mathbf{Q}_f \mathbf{B}_f^T = 0 \]

\[\mathbf{B} \mathbf{Q}^T = 0 \]
Consider the following graph

\[Q = \begin{bmatrix}
1 & -1 & -1 & 0 & 0 & 0 \\
-1 & 0 & 0 & -1 & 0 & 1 \\
0 & 0 & 1 & 0 & -1 & -1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
1 & -1 & 0 & 0 & -1 & -1 \\
-1 & 0 & 1 & -1 & -1 & 0 \\
0 & -1 & -1 & -1 & 0 & 1 \\
\end{bmatrix} \]

\[B = \begin{bmatrix}
0 & 0 & 0 & 1 & -1 & 1 \\
1 & 1 & 0 & -1 & 0 & 0 \\
0 & -1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & -1 & 1 \\
0 & -1 & 1 & 1 & 0 & 1 \\
1 & 0 & 1 & -1 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 \\
\end{bmatrix} \]
Now, let G be a connected graph having e edges and let

$$\mathbf{x}^T = \left[x_1(t), x_2(t), \ldots x_e(t) \right]$$

and

$$\mathbf{y}^T = \left[y_1(t), y_2(t), \ldots y_e(t) \right]$$

be two vectors where x_i and y_i, $i=1,\ldots,e$, correspond to the across and through variables associated with the edge i respectively.
2. POSTULATE Let B be the circuit matrix of the graph G having e edges then we can write the following algebraic equation for the across variables of G (e.g., edge voltage):

$$Bx = 0 \implies \text{KVL}$$

3. POSTULATE Let Q be the cut-set matrix of the graph G having e edges then we can write the following algebraic equation for the through variables of G (e.g., edge current):

$$Qy = 0 \implies \text{KCL}$$
Consider a graph G and a tree T in G. Let the vectors \mathbf{v} and \mathbf{i} partitioned as

$$\mathbf{v} = \begin{bmatrix} \mathbf{v}_{\text{link}} & \mathbf{v}_{\text{branch}} \end{bmatrix}^T; \mathbf{i} = \begin{bmatrix} \mathbf{i}_{\text{branch}} & \mathbf{i}_{\text{link}} \end{bmatrix}^T$$

Then

$$\mathbf{B}_f \mathbf{v} = \begin{bmatrix} \mathbf{U} & \mathbf{B}_{f12} \end{bmatrix} \begin{bmatrix} \mathbf{v}_{\text{link}} \\ \mathbf{v}_{\text{branch}} \end{bmatrix} = 0$$

$$\mathbf{Q}_f \mathbf{i} = \begin{bmatrix} \mathbf{U} & \mathbf{Q}_{f11} \end{bmatrix} \begin{bmatrix} \mathbf{i}_{\text{branch}} \\ \mathbf{i}_{\text{link}} \end{bmatrix} = 0$$

$$\mathbf{v}_{\text{link}} = -\mathbf{B}_{f12} \mathbf{v}_{\text{branch}}$$

$$\mathbf{i}_{\text{branch}} = -\mathbf{Q}_{f11} \mathbf{i}_{\text{link}}$$

fundamental circuit equation fundamental cut-set equation
Definition: Two edges e_i and e_k are said to be connected in series if they have exactly one common vertex of degree two.

Definition: Two edges e_i and e_k are said to be connected in parallel if they are incident at the same pair of vertices v_i and v_k.
General Procedure

1. Draw a graph and then identify a tree.
2. Place all control-voltage branches for voltage-controlled dependent sources in the tree, if possible.
3. Place all control-current branches for current-controlled dependent sources in the cotree, if possible.
4. Find incidence, f-circuit, or f-cutset matrix.
5. Replace voltage, current sources with short, open circuits, respectively.
6. Formulate the matrix equation.