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Lecture 2

Solution of Nonlinear Equations 

( Root Finding Problems )

 Definitions 
 Classification of Methods

 Analytical Solutions
 Graphical Methods
 Numerical Methods

 Bracketing Methods
 Open Methods

 Convergence Notations
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Root Finding Problems

Many problems in Science and Engineering 
are expressed as:

0)(such that      value thefind

 ,function   continuous  aGiven  

rfr

f(x)

These problems are called root 
finding problems.
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Roots of Equations

A number r that satisfies an equation is 
called a root of the equation.
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Zeros of a Function

Let f(x) be a real-valued function of 
a real variable.  Any number  r for 
which  f(r)=0 is called a zero of the 
function.

Examples:

2 and 3 are zeros of the function f(x) = 

(x-2)(x-3).
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Graphical Interpretation of Zeros

 The real zeros of a 
function f(x) are 
the values of x at 
which the graph of 
the function crosses 
(or touches) the x-
axis. Real zeros of f(x)

f(x)
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Simple Zeros
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Multiple Zeros
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Multiple Zeros
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Facts

 Any nth order polynomial has exactly n 
zeros (counting real and complex zeros 
with their multiplicities).

 Any polynomial with an odd order has at 
least one real zero.

 If a function has a zero at x=r with 
multiplicity m then the function and its 
first (m-1) derivatives are zero at x=r 
and the mth derivative at r is not zero.
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Roots of Equations & Zeros of Function
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Solution Methods

Several ways to solve nonlinear equations 
are possible:

 Analytical Solutions

 Possible for special equations only

 Graphical Solutions

 Useful for providing initial guesses for other 
methods 

 Numerical Solutions

 Open methods

 Bracketing methods
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Analytical Methods

Analytical Solutions are available for 
special equations only. 

a
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Graphical Methods

 Graphical methods are useful to provide 
an initial guess to be used by other 
methods.
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Numerical Methods
Many methods are available to solve nonlinear 

equations:

 Bisection Method

 False position Method

 Newton’s Method

 Secant Method

 Muller’s Method

 Bairstow’s Method

 Fixed point iterations

 ……….

These will be 

covered here
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Bracketing Methods

 In bracketing methods, the method starts 
with an interval that contains the root and 
a procedure is used to obtain a smaller 
interval containing the root.

 Examples of bracketing methods:

 Bisection method

 False position method
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Open Methods

 In the open methods, the method starts 
with one or more initial guess points. In 
each iteration, a new guess of the root is 
obtained.

 Open methods are usually more efficient 
than bracketing methods.

 They may not converge to a root.
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Convergence Notation
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Convergence Notation
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Speed of Convergence

 We can compare different methods in 
terms of their convergence rate.

 Quadratic convergence is faster than 
linear convergence.

 A method with convergence order q
converges faster than a method with 
convergence order p if q>p.

 Methods of convergence order p>1 are 
said to have super linear convergence.
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Bisection Method

 The Bisection method is one of the simplest 
methods to find a zero of a nonlinear function. 

 It is also called interval halving method.

 To use the Bisection method, one needs an initial 
interval that is known to contain a zero of the 
function. 

 The method systematically reduces the interval. 
It does this by dividing the interval into two equal 
parts, performs a simple test and based on the 
result of the test, half of the interval is thrown 
away.

 The procedure is repeated until the desired 
interval size is obtained.
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Intermediate Value Theorem

 Let f(x) be defined on the 
interval [a,b].

 Intermediate value 
theorem:

if a function is continuous
and f(a) and f(b) have 
different signs then the 
function has at least one 
zero in the interval [a,b].

a b

f(a)

f(b)
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Examples

 If f(a) and f(b) have 
the same sign, the 
function may have an 
even number of real 
zeros or no real zeros 
in the interval  [a, b].

 Bisection method can 
not be used in these 
cases.

a b

a b

The function has four real zeros

The function has no real zeros
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Two More Examples

a b

a b

 If f(a) and f(b) have  
different signs, the 
function has at least 
one real zero.

 Bisection method 
can be used to find 
one of the zeros.

The function has one real zero

The function has three real zeros



24

Bisection Method

 If the function is continuous on [a,b] and 
f(a) and f(b) have different signs, 
Bisection method obtains a new interval 
that is half of the current interval and the 
sign of the function at the end points of 
the interval are different. 

 This allows us to repeat the Bisection 
procedure to further reduce the size of the 
interval.  
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Bisection Method

Assumptions:

Given an interval [a,b]

f(x) is continuous on [a,b]

f(a) and  f(b) have opposite signs.   

These assumptions ensure the existence 
of at least one zero in the interval [a,b]
and the bisection method can be used to 
obtain a smaller interval that contains the 
zero.
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Bisection Algorithm
Assumptions:
 f(x) is continuous on [a,b] 
 f(a) f(b) < 0  

Algorithm:
Loop
1. Compute the mid point  c=(a+b)/2
2. Evaluate f(c)
3. If    f(a) f(c) < 0  then  new interval [a, c]

If    f(a) f(c) > 0  then  new interval [c, b]
End loop

a

b

f(a)

f(b)

c

a0

b0

a1 a2
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Example

+                                               +                                             -

+                       - -

+           +            -
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Flow Chart of Bisection Method

Start: Given  a,b  and ε

u = f(a) ; v = f(b) 

c = (a+b) /2 ; w = f(c)

is 

u w <0

a=c; u= wb=c; v= w

is 

(b-a) /2<εyes

yes

no Stop

no
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Example

Answer:

[0,2]?  interval  in  the13)(
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Example

Answer:

[0,1]?  interval  in  the13)(

:of zero  a find  tomethodBisection useyou Can 

3  xxxf

used  becan    method Bisection 

satisfied  are  sAssumption

01(1)(-1)f(1)*f(0)  and

[0,1]on    continuous  is)(







xf



31

Best Estimate and Error Level

Bisection method obtains an interval that is 
guaranteed to contain a zero of the 
function. 

The best estimate of the zero of the function 
f(x) after the first iteration of the 
Bisection method is the mid point of the 
initial interval:

2

2
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ab
Error
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
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
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Stopping Criteria 

Two common stopping criteria

1. Stop after a fixed number of iterations

2. Stop when the absolute error is less than 
a specified value

How are these criteria related?
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Stopping Criteria
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Convergence Analysis
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Convergence Analysis – Alternative  Form
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Example

11
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Example

 Use Bisection method to find a root of the 
equation x = cos (x) with absolute error 
<0.02

(assume the initial interval [0.5, 0.9])

Question 1: What is f (x) ?

Question 2: Are the assumptions satisfied ? 

Question 3: How many iterations are needed ?

Question 4: How to compute the new estimate ?
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Bisection Method
Initial Interval

a =0.5 c= 0.7             b= 0.9

f(a)=-0.3776                         f(b) =0.2784
Error < 0.2

0.5                        0.7                 0.9 

-0.3776           -0.0648 0.2784
Error < 0.1

0.7                        0.8                 0.9 

-0.0648 0.1033         0.2784
Error < 0.05
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Bisection Method

0.7                        0.75                 0.8 

-0.0648 0.0183          0.1033
Error < 0.025

0.70                      0.725            0.75 

-0.0648          -0.0235 0.0183
Error < .0125

 Initial interval containing the root: 
[0.5,0.9]

 After 5 iterations:

 Interval containing the root: [0.725, 0.75]

 Best estimate of the root is  0.7375

 | Error | < 0.0125
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A Matlab Program of Bisection Method

a=.5; b=.9;

u=a-cos(a);

v=b-cos(b);

for k=1:5

c=(a+b)/2

fc=c-cos(c)

if u*fc<0 

b=c ; v=fc;

else

a=c; u=fc;

end

end

c =

0.7000

fc =

-0.0648

c =

0.8000

fc =

0.1033

c =

0.7500

fc =

0.0183

c =

0.7250

fc =

-0.0235
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Example

Find the root of:

root    thefind    toused  becan    method Bisection 

0)()(1)1(,10    *

 continuous  is      *

[0,1] :interval  in  the13)( 3







bfaff)f(

f(x)

xxxf
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Example

Iteration a b
c= (a+b)

2
f(c)

(b-a)

2

1 0 1 0.5 -0.375 0.5

2 0 0.5 0.25 0.266 0.25

3 0.25 0.5 .375 -7.23E-3 0.125

4 0.25 0.375 0.3125 9.30E-2 0.0625

5 0.3125 0.375 0.34375 9.37E-3 0.03125
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Bisection Method
Advantages
 Simple and easy to implement
 One function evaluation per iteration
 The size of the interval containing the zero is 

reduced by 50% after each iteration
 The number of iterations can be determined a 

priori
 No knowledge of the derivative is needed
 The function does not have to be differentiable

Disadvantage
 Slow to converge 
 Good intermediate approximations may be 

discarded
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The False-Position Method  (Regula-Falsi)

We can approximate the 
solution by doing a linear 
interpolation between 
f(xu) and f(xl)

Find  xr such that 
l(xr)=0, where l(x) is the 
linear approximation of 
f(x) between xl and xu

Derive xr using similar 
triangles

lu
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
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Example

0 ,1 ,0

0sin3)(

1010 



ffxx

exxxf x

k xk (Bisection) fk xk (False Position) fk

1 0.5 0.471

2 0.25 0.372

3 0.375 0.362

4 0.3125 0.360

5 0.34315 -0.042 0.360 2.93×10-5



Pitfalls of False Position Method
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Iteration xl xu xr εa (%) εt (%)

1 0 1.3 0.65 35

2 0.65 1.3 0.975 33.3 25

3 0.975 1.3 1.1375 14.3 13.8

4 0.975 1.1375 1.05625 7.7 5.6

5 0.975 1.05625 1.015625 4.0 1.6

Iteration xl xu xr εa (%) εt (%)

1 0 1.3 0.09430 90.6

2 0.09430 1.3 0.18176 48.1 81.8

3 0.18176 1.3 0.26287 30.9 73.7

4 0.26287 1.3 0.33811 22.3 66.2

5 0.33811 1.3 0.40788 17.1 59.2

Bisection Method (Converge quicker)

False-position Method
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Newton-Raphson Method 
(Also known as Newton’s Method)

Given an initial guess of the root x0, 
Newton-Raphson method uses information 
about the function and its derivative at that 
point to find a better guess of the root.

Assumptions:
 f(x) is continuous and the first derivative 

is known

 An initial guess x0 such that f’(x0)≠0 is 
given
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Newton Raphson Method
- Graphical Depiction -

 If the initial guess at 
the root is xi, then a 
tangent to the 
function of xi that is 
f’(xi) is 
extrapolated down 
to the x-axis to 
provide an estimate 
of the root at xi+1.
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Derivation of Newton’s Method
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Newton’s Method
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Example
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Example

k (Iteration) xk f(xk) f’(xk) xk+1 |xk+1 –xk|

0 4 33 33 3 1

1 3 9 16 2.4375 0.5625

2 2.4375 2.0369 9.0742 2.2130 0.2245

3 2.2130 0.2564 6.8404 2.1756 0.0384

4 2.1756 0.0065 6.4969 2.1746 0.0010
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Convergence Analysis

)('min

)(''max

2

1

such that 

0 exists then there0)('.0)( where

rat x continuous be)('')('),(Let  

:Theorem

0

0

2

1

0

xf

xf

C

C
-rx

-rx
-rx

rfIfrf

 xf andxfxf

-rx

-rx

k

k

























Proof

57

2

'

''

1

2
''

1

'

1

'

2
''

'

)(
)(2

)(

0)(
!2

)(
)()(

)()()(0 :Raphson-Newton

;0)(
!2

)(
)()()()(

],[:about   )( ofexpansion   seriesTaylor    The

iii

iii

iiii

iiii

ii

xr
rf

rf
xrrx

xr
f

xrxf

xxxfxf

xr
f

xrxfxfrf

rxxrf






























58

Convergence Analysis
Remarks

When the guess is close enough to a 
simple root of the function then Newton’s 
method is guaranteed to converge 
quadratically.

Quadratic convergence means that the 
number of correct digits is nearly doubled 
at each iteration. 
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Problems with Newton’s Method

• If the initial guess of the root is far from

the root the method may not converge.

• Newton’s method converges linearly near 

multiple zeros  { f(r) = f’(r) =0 }. In such  a 

case, modified algorithms can be used to 

regain the quadratic convergence.
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Multiple Roots

1at  zeros0at x zeros

 twohas )(       threehas)(
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Problems with Newton’s Method
- Runaway -

The estimates of the root is going away from 

the root.

x0 x1
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Problems with Newton’s Method
- Flat Spot -

The value of f’(x) is zero, the algorithm fails.

If f ’(x) is very small then x1 will be very far from x0.

x0
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Problems with Newton’s Method
- Cycle -

The algorithm cycles between two values x0 and x1

x0=x2=x4

x1=x3=x5
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Newton’s Method for Systems of 

Non Linear Equations
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Example

 Solve the following system of equations:

0,1  guess Initial
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Solution Using Newton’s Method
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Example
Try this

 Solve the following system of equations:

0,0  guess Initial
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Example
Solution
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Newton’s Method (Review)
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Secant Method
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Secant Method
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Secant Method
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Secant Method - Flowchart
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Modified Secant Method

.divergemay  method  theproperly, selectednot  If

?select  to How:Problem

)()(

)( 

)()(

)(

 

)() (
)('

:needed is guess initial oneonly  method,Secant  modified thisIn

1













iii

ii
i

i

iii

i
ii

i

iii
i

xfxxf

xfx
x

x

xfxxf

xf
xx

x

xfxxf
xf














76

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-40

-30

-20

-10

0

10

20

30

40

50

Example

001.0 

1.11 

points Initial

3)(

 :of  roots    theFind

10

35







errorwith

xandx

xxxf



77

Example

x(i) f(x(i)) x(i+1) |x(i+1)-x(i)|

-1.0000 1.0000 -1.1000 0.1000

-1.1000 0.0585 -1.1062 0. 0062

-1.1062 -0.0102 -1.1053 0.0009

-1.1053 0.0000 -1.1053 0.0000
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Convergence Analysis

 The rate of convergence of the Secant 
method is super linear:

 It is better than Bisection method but not 
as good as Newton’s method.
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Summary

Method Pros Cons

Bisection - Easy, Reliable, Convergent

- One function evaluation per 
iteration

- No knowledge of derivative is 
needed

- Slow

- Needs an interval [a,b] 
containing the root, i.e., 
f(a)f(b)<0

Newton - Fast  (if near the root)

- Two function evaluations per 
iteration

- May diverge

- Needs derivative and an 
initial guess x0 such that 
f’(x0) is nonzero

Secant - Fast  (slower than Newton)

- One  function evaluation per 
iteration

- No knowledge of derivative is 
needed

- May diverge

- Needs two initial points 
guess x0, x1 such that  

f(x0)- f(x1) is nonzero
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Example
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Solution

_______________________________

k         xk f(xk)

_______________________________

0      1.0000   -1.0000

1     1.5000    8.8906

2     1.0506   -0.7062

3     1.0836   -0.4645

4     1.1472    0.1321

5     1.1331   -0.0165

6     1.1347   -0.0005
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Example
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Five Iterations of the Solution

 k         xk f(xk)        f’(xk)     ERROR

 ______________________________________

 0     1.0000   -1.0000   2.0000        

 1     1.5000    0.8750    5.7500    0.1522

 2     1.3478    0.1007    4.4499    0.0226

 3     1.3252    0.0021    4.2685    0.0005

 4     1.3247    0.0000    4.2646    0.0000

 5     1.3247    0.0000    4.2646    0.0000
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Example
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Example

0.0000-   1.5671-   0.0000    0.5671    

0.0002-   1.5672-   0.0002    0.5670    

0.0291-   1.5840-   0.0461    0.5379    

0.4621    1.3679-   0.6321-   1.0000    
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Example

Estimates of the root of:    x-cos(x)=0.

0.60000000000000 Initial guess           

0.74401731944598 1 correct digit    

0.73909047688624 4 correct digits 

0.73908513322147 10 correct digits 

0.73908513321516 14 correct digits  
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Example

In estimating the root of: x-cos(x)=0, to 
get more than 13 correct digits:

 4 iterations of Newton (x0=0.8)

 43 iterations of Bisection method (initial   

interval [0.6, 0.8])

 5 iterations of Secant method

( x0=0.6, x1=0.8)


