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Lecture 10

Ordinary Differential Equations

Part II

�Solving systems of ODEs

�Multiple step Methods

�Boundary value Problems
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Solving a System of First Order ODEs

� Methods discussed earlier such as Euler, 
Runge-Kutta,… are used to solve first 
order ordinary differential equations.

� The same formulas will be used to solve  
a system of first order ODEs.

� In this case, the differential equation is a 
vector equation and the dependent variable is 
a vector variable.
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Euler Method for Solving a System of 

First Order ODEs
Recall Euler method for solving a first order ODE:
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Example - Euler Method

Euler method to solve a system of n first order ODEs.
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Solving a System of n First Order ODEs

� Exactly the same 
formula is used but 
the scalar variables 
and functions are 
replaced by vector 
variables and vector 
values functions.

� Y is a vector of 
length n.

� F(Y,x) is a vector 
valued function.
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Example :
Euler method for solving a system of first order ODEs.
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Example :
RK2 method for solving a system of first order ODEs
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Example :
RK2 method for solving a system of first order ODEs
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Methods for Solving a System of First Order ODEs

� We have extended Euler and RK2 methods to 
solve systems of first order ODEs.

� Other methods used to solve first order ODE can 
be easily extended to solve systems of first 
order ODEs.
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High Order ODEs

� How do we solve a second order ODE? 

� How do we solve high order ODEs? 

163 =++ xxx &&&



11

The General Approach to Solve ODEs
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Conversion Procedure 

High order ODE Convert System of first order ODEs Solve

1. Select the dependent variables

One way is to take the original dependent 
variable and its derivatives up to one degree less 
than the highest order derivative.

2. Write the Differential Equations in terms of 
the new variables. The equations come from the 
way the new variables are defined or from the 
original equation.

3. Express the equations in a matrix form.
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Remarks on the Conversion Procedure 

High order ODE Convert System of first order ODE Solve

1. Any nth order ODE is converted to a system of n
first order ODEs. 

2. There are an infinite number of ways to select 
the new variables. As a result, for each high 
order ODE there are an infinite number of set of 
equivalent first order systems of ODEs.

3. Use a table to make the conversion easier. 
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Example of Converting a High Order 

ODE to First Order ODEs
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Example of Converting a High Order 

ODE to First Order ODEs
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Example of Converting a High Order 

ODE to First Order ODEs
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Example of Converting a High Order 

ODE to First Order ODEs
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Conversion Procedure for Systems of 

High Order ODEs

System of high order ODEs Convert System of first order ODE Solve

1. Select the dependent variables

Take the original dependent variables and their 
derivatives up to one degree less than the 
highest order derivative for each variable.

2. Write the Differential Equations in terms of 
the new variables. The equations come from the 
way the new variables are defined or from the 
original equation.

3. Express the equations in a matrix form.
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Example of Converting a High Order 

ODE to First Order ODEs
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Example of Converting a High Order 

ODE to First Order ODEs
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Solution of a Second Order ODE

� Solve the equation using Euler method. Use h=0.1
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Solution of a Second Order ODE
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Adams Moulton multi-step method

� All the methods discussed so far are so-
called “single-step” method.

� In multi-step methods, estimates yi+1 from 
more than one yi and xi.
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Single Step Methods
� Single Step Methods:

� Euler, Heun’s method and Runge-Kutta are 
single step methods.

� Estimates of yi+1 depends only on yi and xi.

xi-2 xi-1 xi xi+1
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Multi-Step Methods 
� 2-Step Methods

� In a two-step method, estimates of  yi+1
depends on yi, yi-1, xi, and xi-1

xi-2 xi-1 xi xi+1
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Multi-Step Methods 
� 3-Step Methods

� In an 3-step method, estimates of  yi+1
depends on yi ,yi-1 ,yi-2, xi , xi-1, and xi-2

xi-2 xi-1 xi xi+1
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2-Step Predictor-Corrector
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3-Step Predictor-Corrector
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4-Step Adams-Moulton  Predictor-

Corrector

(Bottom)Corrector  (Top),Predictor  : slideNext 
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How Many Function Evaluations are 

Done? 

# of function evaluations = 1+ number  of corrections

Number of function evaluations is the 
Computational Speed or Efficiency

How many evaluations per step?

No need to repeat the evaluation of 
function f at previous points

Only one new function evaluation in the 
predictor

One function evaluation per correction step
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Example  
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Example  
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Example  
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Multi-Step Methods

� Single Step Methods

� Euler and Runge-Kutta are single step 
methods.

� Information about y(x) is used to estimate 
y(x+h).

� Multistep Methods

� Adam-Moulton method is a multi-step method.

� To estimate y(x+h), information about y(x), 
y(x-h), y(x-2h)… are used. 
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Number of Steps

� At each iteration, one prediction step is 

done and as many correction steps as 

needed.

� Usually few corrections are done (1 to 3).

� It is usually better (in terms of accuracy) 

to use smaller step size than corrections.
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Boundary-Value and 

Initial Value Problems

Boundary-Value Problems

� The auxiliary conditions are 
not at one point of the 
independent variable

� More difficult to solve than 
initial value problem
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The Shooting Method

Target
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The Shooting Method

Target
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The Shooting Method

Target
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Solution of Boundary-Value Problems

Shooting Method for Boundary-Value Problems

1. Guess a value for the auxiliary conditions at one 
point of time.

2. Solve the initial value problem using Euler, 
Runge-Kutta, …

3. Check if the boundary conditions are satisfied, 
otherwise modify the guess and resolve the 
problem.

� Use interpolation in updating the guess.

� It is an iterative procedure and can be 
efficient in solving the BVP.
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Solution of Boundary-Value Problems

Shooting Method
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Example 1

Original BVP
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Example 1

Original BVP
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Example 1

Original BVP
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Example 1

Original BVP
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Example 1

Step1: Convert to a System of First Order ODEs
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Example 1

Guess # 1
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Example 1

Guess # 2
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Example 1

Interpolation for Guess # 3
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Example 1

Interpolation for Guess # 3
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Example 1

Guess # 3
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Summary of the Shooting Method

1. Guess the unavailable values for the 
auxiliary conditions at one point of the 
independent variable.

2. Solve the initial value problem.

3. Check if the boundary conditions are 
satisfied, otherwise modify the guess and 
resolve the problem. 

4. Repeat (3) until the boundary conditions 
are satisfied.



54

Properties of the Shooting Method

1. Using interpolation to update the guess often 
results in few iterations before reaching the 
solution.

2. The method can be cumbersome for high order 
BVP because of the need to guess the initial 
condition for more than one variable.
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Solution of Boundary-Value Problems

Discretization method : Finite Difference Method
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Solution of Boundary-Value Problems

Finite Difference Method

� Divide the interval into n sub-intervals.

� The solution of the BVP is converted to 
the problem of determining the value of 
function at the base points. 

� Use finite approximations to replace the 
derivatives.

� This approximation results in a set of 
algebraic equations. 

� Solve the equations to obtain the solution 
of the BVP.
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Finite Difference Method

Example
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Finite Difference Method

Example
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Second Order BVP
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Second Order BVP
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Second Order BVP
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Second Order BVP
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Summary of the Discretization Methods

� Select the base points.

� Divide the interval into n sub-intervals.

� Use finite approximations to replace the 
derivatives.

� This approximation results in a set of 
algebraic equations. 

� Solve the equations to obtain the solution 
of the BVP.
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Remarks

Finite Difference Method :

� Different formulas can be used for 
approximating the derivatives.

� Different formulas lead to different 
solutions. All of them are approximate 
solutions.

� For linear second order cases, this 
reduces to tri-diagonal system.


