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Impedance Matching 
1 Introduction 

Impedance matching is the process to match the 

load ZL to a transmission line by a matching 

network, as depicted in Fig. 1. Recall that the 

reflections are eliminated under the matched 

condition. Impedance matching  is important for 

 
Fig. 1: Impedance matching 

the following reasons: 

• To achieve maximum power transfer and minimize power loss. 

• To improve signal-to-noise ratio. 

• To reduce amplitude and phase errors for power distribution networks, e.g., antenna arrays. 

There are many choices regarding matching network design, but the following factors must be 

considered in the selection of the network: 

• Complexity 

• Bandwidth 

• Implementation 

• Adjustibility 

 

2 Matching with Lumped Elements (L Networks) 

The L-section is considered the simplest type of matching 

network. There are two possible configurations, as depicted 

in Fig. 2. (a) is the network for Re[ZL] > Z0, while (b) is the 

network for Re[ZL] < Z0. Note that in both configurations, 

two components (jX, jB) are required in order to have 

degree of freedom 2, since the load impedance is generally 

complex. 

Consider Fig. 2(a). Let ZL = RL+jXL, then the impedance 

seen looking into the matching network followed by the 

load impedance must be equal to Z0, i.e., 

)/(1

1
0

LL jXRjB
jXZ

++
+= . 

Rearranging and separating into real and imaginary parts 

yield 
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Fig. 2: L-section matching networks. 

Solving the above equations yields 
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Note that the argument inside the second square root is always positive since RL > Z0. The series 

reactance can be found as 
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Note also that two solutions are generally possible. One must consider the above factors in deciding 

which L network to use. 

Likewise, for the network in Fig. 2(b), the matched condition is given by 
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Rearranging and separating into real and imaginary parts yield 
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LL RZXXBZ −=+ 00 )( ;  LL RBZXX 0=+ . 

Solving for X and B gives 
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0

0 /)(

Z

RRZ
B

LL−±
= . 

Note that RL < Z0 in this case, so the argument of the square root is always positive. 

Example 1 Design an L-section matching network to match a series RC load with an impedance ZL = 

200 – j100 Ω, to a 100 Ω line, at a frequency of 500 MHz. 

 
 

 

  
 

3 Single-Stub Tuning 

The impedance matching using L-sections discussed previously requires lumped elements that might 

not be available, thus it is not practical in some cases. The single-stub tuning is the matching 

technique that uses a single open-circuited or short-circuited length of transmission-line (a “stub”), 

connected either in parallel or in series with the transmission feed line at a certain distance from the 

load. Note that there are two design parameters, namely the length of the stub and the distance from 

the load, which contribute degree of freedom 2, as in the matching with L-sections. 

The choice of open-circuited stub or short-circuited stub depends on the type of transmission line 

media. For microstrip lines, open stubs are preferred due to ease of fabrication, while for coaxial lines 
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or waveguides, short stubs are more desirable since such open-circuited stubs tend to radiate, resulting 

in reactance changes. 

3.1 Shunt Stubs 

The single-stub shunt tuning circuit configuration is shown in 

Fig. 3. Refer to the figure, to match the impedance, it is required 

that 

stubin YYYY +== 10 . 

Since Ystub is purely susceptance (i.e., zero conductance), the real 

part of Y1 must be equal to Z0. Furthermore, the susceptance of  

Y1 must cancel out the susceptance of Ystub, resulting in Yin 

becomes Y0. Using the Smith chart makes the design process 

easier. The first step is to find the distance such that the 

normalized admittance is on the 1+jb circle. Then find the 

length such that the stub has susceptance –jb. 

 
Fig. 3: Single-stub shunt tuning 

Example 2 For a load impedance ZL = 60 – j80 Ω, design two single-stub (short circuit) shunt tuning 

networks to match this load to a 50 Ω line. Assuming that the load is matched at 2 GHz and the load 

consists of a resistor and a capacitor in series. 

 

 

 

  
3.2 Series Stubs 

The single-stub series tuning circuit configuration is 

shown in Fig. 4. Refer to the figure, to match the 

impedance, it is required that 

stubin ZZZZ +== 10 . 

Since Zstub is purely reactance (i.e., zero resistance), the 

real part of Z1 must be equal to Z0. Furthermore, the 

reactance of  Z1 must cancel out the reactance of Zstub, 

resulting in Zin becomes Z0. As in the shunt tuning 

circuit design, using the Smith chart makes the design 

process easier. The first step is to find the distance such  

 
Fig. 4: Single-stub series tuning 
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that the normalized impedance is on the 1+jx circle. Then find the length such that the stub has 

reactance –jx. 

Example 3 For a load impedance ZL = 100 + j80 Ω, design two single-stub (open circuit) series tuning 

networks to match this load to a 50 Ω line. Assuming that the load is matched at 2 GHz and the load 

consists of a resistor and an inductor in series. 

 

 

 

   
4 Double-Stub Tuning 

The single-stub tuner requires a variable length of line between the load and the stub, thus it is 

difficult to make it “adjustable”. The double-stub tuning shown in Fig. 5 uses 2 adjustable shunt stubs 

in fixed positions. However, the double-stub tuner cannot match all load impedances. 
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  (a)      (b) 

Fig. 5: Double-stub tuning (a) Original circuit with the load an arbitrary distance from the first stub 

(b) Equivalent circuit with the load transformed to the first stub. 

The Smith chart solution can be illustrated in Fig. 6. First, locate yL and draw the rotated 

1+jb circle with respect to the stub spacing d. Then move the load admittance onto the 

rotated 1+jb circle (points y1, y’1) using the susceptance b1, b’1 of the stub. Next, move the 

points y1, y’1 onto the 1+jb circle (points y2, y’2). Finally, add the susceptance b2, b’2 to 

match the load impedance. Note that there are two possible solutions as in the case of 

single-stub tuning. 
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Notice that if yL is inside the shaded 

region in the figure, specified by g0+jb 

circle, it is impossible to move this 

admittance onto the rotated circle, 

which means that it cannot be matched 

by a double-stub tuner (i.e., there is no 

solution). Therefore, this shaded region 

forms a forbidden range of load 

admittances that cannot be matched by 

this double-stub tuner. Reducing the 

space d can lead to the reduction in the 

size of this forbidden range, however, d 

must be kept sufficiently large for 

fabricating two separate stubs. In 

addition, spacings near 0 or λ/2 load to 

matching networks that are very 

frequency sensitive. In practice, stub 

spacings are usually chosen as λ/8 or 

3λ/8. Furthermore, if the length of line 

between the load and the first stub can 

be adjusted, then yL can always be 

moved out of the forbidden region. 

 
Fig. 6: Smith chart diagram for the operation of a double-

stub tuner. 

Example 4 For a load impedance ZL = 60 - j80 Ω, design a shunt double-stub tuner to match 

this load to a 50 Ω line. The stubs are to be open-circuited and are spaced λ/8 apart. Also, 

the load is assumed to consist of a 60Ω-resistor and a 0.995pF-capacitor. 

 

 

 

 
 

5 Quarter-Wave Transformer 

Recall that, for a quarter-wavelength transmission line (l = λ/4), the input impedance becomes 

Lin ZZZ /2

0= or LinZZZ =2

0 . 
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Therefore, a quarter-wavelength transmission line can be used to convert a resistive load to match a 

transmission line by choosing the proper characteristic impedance of the quarter-wavelength line. This 

is called a quarter-wave transformer. The general configuration of this quarter-wave transformer is 

shown in Fig. 6, where 

LRZZ 0

2

1 = . 

To match an arbitrary ZL using the quarter-

wave transformer, one must somehow modify 

the load such that it becomes purely resistive. 

This may be done by adding certain lumped  
 

Fig. 6 

elements, transmission line of certain length, tuning circuits or stubs. 

Example 5 Repeat example 3 by using the quarter-wave transformer. 
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6 The Theory of Small Reflections 

Quarter-wave transformers provide a simple mean of impedance matching, but cannot achieve broad 

bandwidth. To obtain more bandwidth, multisection transformers can be used. 

Single-section Transformer 
Consider the single-section transformer shown 

in Fig. 7, the partial reflection and transmission 

coefficients are given by 
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The total reflection can then be given in terms 

of an infinite sum of partial reflections and 

transmissions as follows: 
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Using the geometric series 

 
Fig. 7 
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Using Γ2=-Γ1, Τ21=1+Γ1, Τ12=1−Γ1 yields 

θ

θ

2

31

2

31

1 j

j

e

e
−

−

ΓΓ+
Γ+Γ

=Γ . 

If the discontinuities between the impedances Z1, Z2 and Z2, ZL are small, then |Γ1Γ3|<<1, and 
θ2

31

j
e

−Γ+Γ≅Γ . 

Multisection Transformer 

Now consider the multisection transformer shown in Fig. 8. This transformer consists of N equal-

length (commensurate) sections of transmission lines. Partial reflection coefficients can be defined at 

each junction as 
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Fig. 8 

We also assume that all Zn increase or decrease monotonically across the transformer, and ZL is real. 

This implies that Γn will be real and of the same sign. Then the total reflection coefficient Γ can be 

approximated as 



Impedance Matching 

 

8 
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N

jj
eee

24

2

2

10)( −−− Γ++Γ+Γ+Γ=Γ L . 

Furthermore, assume that the transformer can be made symmetric, so that Γ0=ΓN, Γ1=ΓN-1, etc. (Note 

that this does not imply that the Zn’s are symmetrical.) Then, 

{ }L++Γ++Γ=Γ −−−−− )()()( )2()2(

10

θθθθθθ NjNjjNjNjN
eeeee . 

It follows that for N even, 







 Γ++−Γ++−Γ+Γ=Γ −

2/10
2

1
)2cos()2cos(cos2)( Nn

jN
nNNNe LL θθθθ θ , 

and for N odd, 

{ }θθθθθ θ cos)2cos()2cos(cos2)( 2/)1(10 −
− Γ++−Γ++−Γ+Γ=Γ Nn

jN
nNNNe LL . 

From these results, one can notice that any desired reflection response (as a function of θ) can be 

realized by choosing the proper Γn’s and using enough sections. Recall the fact that a smooth function 

can be approximated by a Fourier series, if enough terms are used. 

7 Binomial Multisection Matching Transformers 

The passband response of a binomial transformer is optimum in the sense that, for a given number of 

sections, the response is flat as possible near the design frequency. Thus, such as response is also 

known as maximally flat. This type of response is designed, for an N-section transformer, by setting 

the first N-1 derivatives of |Γ(θ)| to zero, at the center frequency f0. Such a response can be obtained if 
NjeA )1()( 2θθ −+=Γ . 

Then the magnitude |Γ(θ)| is 

NN
N

jjj AeeeA θθ θθθ cos2)( =+=Γ −−
. 

Note that |Γ(θ)|=0 for θ=π/2 and that (dn|Γ(θ)|)/dθn = 0 at θ=π/2 for n = 1, 2, …, N-1. (θ=π/2 

corresponds to the center frequency f0, for which l=λ/4 and θ = β l = π /2.) 

Let f→0, then θ = β l = 0, and 
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since for f = 0 all sections are of zero electrical length. Thus, 
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Now expanding Γ(θ) according to the binomial expansion yields 
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If Γn’s are assumed to be small, the following approximation can be applied: 

n

n

nn

nn
n

Z

Z

ZZ

ZZ 1

1

1 ln
2

1 +

+

+ ≅
+
−

=Γ , since 
1

1
2ln

+
−

≅
x

x
x . Therefore, 

00

01 ln2)2(222ln
Z

Z
CC

ZZ

ZZ
AC

Z

Z LN

n

NN

n

L

LNN

nn

n

n −−+ ≅
+
−

==Γ≅ . 

To calculate the bandwidth, let Γm denote the maximum value of reflection coefficient that can be 

tolerated over the passband. Then, 
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Example 6 Design a three-section transformer to match a 50 Ω load to a 100 Ω line, and calculate the 

bandwidth for Γm = 0.05. 

 

 

 

 

 

 

 

 

 

8 Chebyshev Multisection Matching Transformers 

In contrast with the binomial matching transformer, the Chebyshev transformer optimizes bandwidth 

at the expense of passband ripple. The Chebyshev transformer is designed by equating Γ(θ) to a 

Chebyshev polynomial, which has the optimum characteristics needed for this type of transformer. 

Chebyshev Polynomial 

The nth order Chebyshev polynomial is a polynomial of degree n, and is denoted by Tn(x). The first 

four Chebyshev polynomials are 

188)(;34)(;12)(;)( 24

4

3

3

2

21 +−=−=−== xxxTxxxTxxTxxT . 

Higher-order polynomials can be found using 

the following recurrence formula: 

)()(2)( 21 xTxxTxT nnn −− −= . 

Some important properties of Chebyshev 

polynomials are listed here: 

1. For -1≤x≤1, |Tn(x)|≤1. In this range, the 

Chebyshev polynomials oscillate between ±1. 

This is the equal ripple property, and this 

region will be mapped to the passband of the 

matching transformer. 

2. For |x|>1, |Tn(x)|>1. This region will be 

mapped to the frequency range outside the 

passband. 

3. For |x|>1, |Tn(x)| increases faster with x as n 

increases. 

 
Fig. 8: First four Chebyshev polynomials 

Now, let x = cos θ for |x| < 1. Then it can be shown that the Chebyshev polynomials can be expressed 

as 

θθ nTn cos)(cos = , or more generally as 
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Since equal ripple is desirable in the passband, it is necessary to map θm to x = 1 and π−θ m to x = -1, 

where θm and π−θ m are the lower and upper edges of the passband. This can be accomplished by 

replacing cos θ  in the above equation with cos θ /cos θ m: 

















==
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mn
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n nTT
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cos
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. 

Then |sec θ m cos θ | ≤ 1 for θ m < θ  < π−θ m, so |Tn(sec θ m cos θ )| ≤ 1 over this same range. 

It follows that the first four terms of the Chebyshev polynomials can be written as 

1)12(cossec)cos(sec;cossec)cos(sec 2

21 −+== θθθθθθθθ mmmm TT ; 

θθθθθθθ cossec3)cos33(cossec)cos(sec 3
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1)12(cossec4)32cos44(cossec)cos(sec 24

4 ++−++= θθθθθθθ mmmT . 

The above results can be used to design matching transformers with up to four sections. 

Design of Chebyshev Transformers 

A Chebyshev equal-ripple passband can be synthesized by making Γ(θ) proportional to TN(secθm 

cosθ), where N denotes the number of sections. Thus, 
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where the last term in the series is (1/2)ΓΝ/2 for N even and Γ(N-1)/2cosθ for N odd. The constant A can 

be found from letting θ = 0: 
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Now if the maximum allowable reflection coefficient magnitude in the passband is Γm (i.e., the ripple), 

then Γm = |A|, since the maximum value of Tn(secθmcosθ) in the passband is unity. Using the 

approximation introduced in the previous section yields 

00

0 ln
2

11
)(sec

Z

Z

ZZ

ZZ
T L

mL

L

m

mN Γ
≅

+
−

Γ
=θ . It follows that 
























Γ
≅
























+
−

Γ
= −−

m

L

L

L

m

m

ZZ

NZZ

ZZ

N 2

)/ln(
cosh

1
cosh

1
cosh

1
coshsec 01

0

01θ . 

Once θm is known, the fractional bandwidth can be calculated from 

π
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Each Γn can be determined by expanding TN(secθmcosθ) and equating similar terms of the form cos(N-

2n)θ. The following approximation can be applied to improve the accuracy: 
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Example 7 Design a three-section Chebyshev transformer to match a 100 Ω load to a 50 Ω line, with 

Γm = 0.05. 

 


