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2.10 Vector Network Analyzers (VNAs)

S-paramneters are such a fundamental part of RF and microwave analysis and design that it is important
to have a simple but accurate way of measuring them. The vector network analyzer (VNA) is an
instrument that is capable of making such measurements quickly (most often for two-port networks, but
analyzers capable of handling more than two ports are available). A VNA can measure complex quantities
in the frequency domain (analyzers that can measure only magnitudes are called scalar network analyzers
or SNAs), and so can determine not only reflection and transmission coefficients bui also impedances and
admittances. Using the Fast Fourier Transform (FFT), the time domain response of microwave networks
can be measured as well. The VNA is a part of every modern microwave lab. Major manufacturers of
VNAs are Agilent (formerly Hewlett-Packard), Anritsu and Rohde & Schwarz. The most sophisticated
network analyzer on the market today is the Agilent ENA and PNA network analyzer series {which
have replaced the classic HP 8510C VNA). The 65-GHz version costs around $240,000, while the 110-
GHz precision network analyzer costs in the neighborhood of $500,000 (2005 data). There are ways
to do measurements up to 650 GHz, and the price goes up accordingly. The reason is that microwave
componenis at higher frequencies are much harder to make with low losses, and for active devices,
obtaining enough power from semiconductor devices is a problem.

We will present a more detailed description of the operation of a VN A in sections 4.5-4.6 of chapter 4,
but we wish here to focus only on a very important aspect of VNA operation—its calibration. A real,
two-port VNA can be represented as an ideal (error-free) two-port VNA to which an “error box” has
been connected at each port, and one between the ports, as shown in Fig. 2.15. Of course, this is
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Figure 2.15: Model of a two-port VNA as an ideal VNA with an error box at each port connected to
the device under test (DUT), and an error box between port 1 and paort 2.

not what the VNA actually looks like inside, but it is an equivalent circuit for it in the same spirit as
a Thévenin equivalent circuit is for an ordinary two-terminal network. The ideal VNA measures not
the S-parameters of the device under test {(DUT), but the parameters [Sp] of the composite two-port
formed by cascading error box E1 with the DUT and the second error hox E2, and the result connected
in parallel with an error box Ex representing imperfect isolation effects (leakage between ports 1 and 2)
that are important in transmission calibration.
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The error boxes account for the many ways in which inaccuracies may enter inlo the “raw” measured
S-parameters [S,]: the effect of the lesl port cables and coaxial conneclors, tolerances on components
used in the VNA circuits, variations caused by changes in temperature, pressure, humidity, etc. At lower
frequencies, the errors of measurement instruments such as multimeters are generally sinall and can be
compensated for on a long term basis (over a number of years), but at microwave frequencies their effect
is more serious, and we must perform a calibration of the VNA before every use in order to determine
the S-parameters of the error boxes and remove their influence on the raw measured data.

Calibration is accomplished by connecting known (or at least partially known) devices known as
calibration standards (or cal standards for short) to the measurement ports of the VNA, and using the
measured raw S-parameters to deduee information about the error boxes. Once we have this information,
we can measiure unknown DUTs on the VNA, which will use an internal microprocessor to eliminate
the effect of the error boxes from the raw data and display the actual S-parameters of the DUT. As
an exanple, if a one-port termination whose reflection coefficient is Sy; is attached to port 1, the raw
reflection coeflicient measured at the ideal VNA can be shown to be

SIl

S = R — 2.30
nll =714+ 47 " (2.30)
where the [S] matrix of error box El {assumed to be reciprocal) is given by
_ | e 9
se=| 70 5 ] (231

In the following subsections we will indicate two ways of finding the S-parameters of the error boxes
using measurements of cal standards. Once the elements of [9g1] have been found, we can determine
S11 from the “raw”™ or “uncalibrated” measured value 5,11 as:

Snl1 ~— T1d
S1y = ! 2.32
12 116 (S — 71a) (2:32)

2.10.1 SOLT Calibration

A widely used calibration technique employs calibration standards of high precision. The most common
such method is SOLT (short-open-load-thru) calibration, wherein a short circuit, an open circuit and a
matched load are successively connected to one of the ports and measured on the VNA to accomplish the
reflection calibration. After this, a thru standard is connected between ports 1 and 2, and transmission
measurements carried out. Let us look in detail at the reflection calibration process.

Suppose our cal standards (denoted A, B and C) have Sa11 = —1, Sp11 = +1 and Sein = 0 (it is
not necessary for the cal standards to be ideal ones like this; the same general procedure will apply with
somewhat more complicated equations to solve). Then we have the three equations

b =1
Sl = r1g -+ 12 2.3
All = T14 -+ 17 I (2.33)
2 1
SmBll =714 + 'f'l'l—'m" (2.34)
— s
Sme11 =rig (2.35)

where Syua11, Smpi1 and Spon denote the raw measured values of Spq1 at the ideal VNA with cal
standards A, B or C connected to port 1, respectively. These equations are easily solved to give

£ = r)(S'mAIl - SmCll) {SmBll - SmGll)
: SmAIl - SmBll

28771.6'11 - SmAll - SmBli
Smxl]l - SmBli

s =
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T1d = Smo1t (2.38)

An exactly similar procedure applies to the determination of the S-parameters of error box E2 at port 2.
Calculations related to the transmission calibration to determine Ex are analogous, though algebraically
more complicated, and will not be presented here.

2.10.2 TRL Calibration

Calibration kits (sets of high precision cal standards} are expensive and are not always available for
nonstandard or outdated types of transmission line. Fortunately, there are alternative calibration meth-
ods that do not require high precision cal standards and make only a modest sacrifice in accuracy. The
most popular of these methods is TRL (thru-reflect-lineg), in which the “thru” standard is simply a
direct connection between ports 1 and 2 (the connectors must be such as to permit this), the “reflect”
standard is some load with a high reflection coefficient (is phase can be known only approximately) and
the “line” standard is a length of transmission line whose electrical length is known very approximately
(e. g.. it is closer to A/4 than to 3A/4). Similar algebra to that used for SOLT calibration shows that
TRL calibration can not only determine the S-parameters of the error boxes, but also can determine
precisely the reflection coefficient pe,; of the reflect standard and the transmission factor e~ of the line
standard (see D. M. Pozar, Microwave Engineering, 3rd edition, pp. 193-196 for details).

At a [requency where the lenglh of the line standard is at or near an integer number of hall wave-
lengths, measurement of this cal standard will give the same values (or close to them) as measurement
of the thru standard. Because of this, there are frequency Himitasions imposed onr TRL calibrations that
are not present in SOLT calibrations. As an example, if the thru standard has zero electrical length,
and the length of the line standard in cm is L, the largest contiguous frequency range in GHz that can
be calibrated by the TRL method is

1.67 < < 13.33
lemv/ee 0 S 1 e
16.GT <

which is a maximum frequency ratio of 8:1 (there are also higher frequency ranges such as T

(2.39)

Jon: < 128":‘2_, ele., bub these have a much smaller relative bandwidth). Modern network analyzers
have built-in capabilities for both SOLT and TRL calibrations, and often other calibration methods as

well.

2.11 Practice questions

1. A measurement of a two-port gave the following S-matrix:

0.1£0° 0.8£90°

S=1| 08s00° 0220°

Determine if the network is reciprocal and whether it is lossless.

[Sw]

. In a common-source amplifier, define the S-parameters and relate them to quantities you have
studied in circuit analysis.

. What is the Smith chart? Which quantities can you plot on it?
. What do concentric circles centered at the middle of the chart represent?

. What do circles of constant resistance and Lhose of constant reactance look like?

[ T | O -

. Which part of the chart corresponds lo real impedances, and which to imaginary ones? Which
part of the chart corresponds to capacitances, and which to inductances? What if you looked at
the admittance instead of the impedance chart?
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possible impedances. A practical difficully in producing high-quality tuners is the fact that any
realistic component will have loss, which will limit the impedance range. Namely, the very edge of
the Smith chart is purely reactive and the presence of loss prevents a tuner from reaching those
impedances. Air coaxial tuners have the lowest loss and are the most common. They typically
consist of two movable parts with a different characteristic impedance as shown in Fig. 4.1, and
are referred to as “slug tuners”. Focus Microwaves, Inc. and Maury Microwave produce tuners
capable of realizing VSWRs higher than 40:1 (see, e. g. http://www.focus-microwaves.com - look
under manual and automatic tuners).

C D D {> (> O
Za Z,
Z i} Z Z
- -
o D { { D O
()

ZLO\\’

ZLOW

)] {o)
Zo Zy 7, Z,
T
——
——
Via holes Zy
to ground
() {e) 1Bias ! f
HE
“ “ & & % p “ Port 1 G P Port 2
s 2
C(V) ¢
(g) (h)

Figure 4.1: (a) Electrical model of a slug tuner. (b) Variable atlenuator. (¢} Low-pass filter implemented
in microstrip, (d) Microstrip high-pass filter, (e) Microstrip coupled-line bandpass filter, (I) Microstrip
band-stop filter, (g) Block diagram of a loaded-line phase shifter with varactor diodes, and (h) Two-port
diagram of a common-source MESFET amplifier.

(3) Attenuators — are matched two-ports which absorb some power and are therefore lossy. They

are reciprocal. Attenuators can be made to be variable, as shown in a lumped-element version,
Fig. 4.1(b). They can also be implemented in waveguide using power transler into non-propagating
modes, as you will see in the lab. The loss is defined as the ratio of the oulput to inpul power,
where the input power is the incident power minus the reflected power. This allows simple power
calculations for cascaded two-port networks, and loss is really like (1/gain), or in dBs, negative
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4.5 Operating Principles of the VINA

In section 2.10, we modeled a VNA by a hypothetical ideal VNA to which error boxes were connected
to account for all the nonideal aspects of a real VINA. This allowed us to present the principles behind
calibration of a VNA., but did not discuss how the ideal VNA could be realized, even approximately.
As we saw in the previous chapter, the rapid variations with which the phase of a microwave signal is
associated are virtually impossible for most instrumentation to follow accurately, and only time-average
power (or amplitude) is directly measurable. In this section and the next one, we will show how such
information can be used to accomplish the task of measuring ratios of wave amplitudes in RF and
microwave nebworks.

‘The phase of a microwave signal can usually only be measured indirectly: for example, a reference
signal and a signal to be measured can be sent to a mixer (see section 9.2) lo obtain a lower-frequency
signal related to the original, and the same thing repeated with the reference signal phase shifted by 90°.
The powers of the twe low-frequency outputs are then enough to determine the phase of the original
signal. When combined with a power measurement to determine the amplitude of the signal, we have
a measurement of the complex voltage (or current). Such an instrument is called a vector voltmeter.
Note that the vector voltmeter is really a voltage comparator for two separate voltages—the one to be
measured, and a reference voltage in the present example.

Vector voltmeter

(HGR(D
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by lag bg| a4

source &1 (3) (4) iZ__
(1) Linear four-port (2) DUT
<+ (test sef) —

4 bo

Figure 4.8: The vector volimeler based nelwork analyzer.

A common way to perform power measurements, which is used in most commercial instruments, is
to combine a linear four-port {(called a test set) with a vector voltmeter. The vector voltmeter used in
commercial network analyzers is a two-port device that is linear with respect to the waves at its two RF
porls {I and II). It generates a complex response that can be wrillen in the lorm

=Ky + KL (4.8)
ary

where a; and a;; are the incident wave ainplitudes at its ports, and Ky and K. are complex constants
characteristic of the vector voltineter.

In a one-port reflection measurement, a vector voltmeter is connected to ports 3 and 4 of a test
set. The other two poris are connected to a source and the device under test (DUT), Fig. 4.8. The
configuration described here is usually called a reflectometer, and the test set typically consists of two
directional couplers along with some aunxiliary circuitry. The principle ol operation of this circuil is as
follows. We need to set up the equations for the wave amplitudes in the various ports, and establish
the form of the rclationships between them. The constants which appear in these relations will be



4.5. OPERATING PRINCIPLES OF THE VNA 81

determined by calibration, in which known loads are connected at the DUT port, and the measured
values of response [rom the veclor vollmeter are used to obiain the constants.

The source sends a wave a; into port 1 of the test set, which we assume to be matched to the source.
Parts of this wave reach the DUT and get reflected, and parts of it get to the ports of the vector volimeter
via ports 3 and 4 of the test sel and gel partially reflected there as well. The vector volimeter samples
different combinations of the waves that are incident and reflected at the DUT. Since the test set and
the vector voltmeter are both linear multiports, we can write the outgoing waves from the test set in
terms of a; and ap only:

ba = Mia; + Alzas
3 = ILjay + Laas {4.9)
b4 = K'laz + I(gag

where the K’s, Af’s and L’s are complex constants that depend on the S-parameters of the test set and
those of the vector voltmeter.

By definition, ag = pba, where p is the unknown reflection coefficient of the DUT, so we can solve
for bs in terms of ay only, and b3 and by in terms of @y and ba:

be __M_l_a}

IR pfli[g
bs = Lija)+ Laphy {4.10)
b4 = K1a1 -+ Kgpbg

From these formulas, the we can express the complex ratio bs/by in terms of the various network-
analyzer-dependent constants (K7, Ly, etc.), which left as an exercise. When you plug the resuit of your
homework into this expression, and divide top and bottom by the coefficient of p in the numerator, you
should get the following expression: M
p+

= BrtrC {4.11)
where A, B and C are complex constanis dependent. enly on {the properlies of the network analyzer, and
not on those of the DUT. So, the final result is that the value of r, which the vector voltmeter gives you,
is @ bilinear transform of the true reflection coefficient of the device you are measuring.

The result ol the measurement is independent of the level of the test signal incident at port 1. The
three unknown complex constants in (4.11) are dependent on the internal properties of the network
analyzer, and can change due to component variations, changes in temperature and hwinidity, and so
on. Thus, as we saw in section 2.10, three known cal standards can be measured to determnine these
constants. From the formula for r,

—A+prB+7C = p, (4.12)

which is a linear equation in the unknown constants A, B and €. Therefore, by observing the three
values of r that result from ineasuring three known values of p, the constants 4, B and ¢ can be
determined. Just as we saw from the error-box model in section 2.10, only three calibration standards
are needed for a one-port measurement in this system.

'The situation is a bit more complicated when the S-parameters of an unknown two-port are to be
measured. The setup for doing this is shown in Fig. 4.9, The part of the test set connected to port 1
of the DUT is the reflectometer from above (it is in the dashed box in Fig. 4.9}, and another port, the
“transmission-return” receives the signal from port 2 of the DUT. A coaxial switch decides which signal
is Lo be given to the vector voltmeter lor the complex ratio measurement. To get the full §-matrix, the
DUT must be flipped end for end once during the measurement, and the switch switched each time to
observe the reflection at both ports and the transinission in both directions through the DUT. This gives
a total of four measurements. A similar derivation as in the previous case of the reflection measurement
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Figure 4.9: A reflection-transmission test set for full S-parameter measurements using a 4-port network
analyzer.

can be derived, but the expressions for the S-parameters that comne out of it are very messy. It turns out
that you need to measure six known standards to perform a calibration. It is important to understand
that in a network analyzer, these measurements are done at many frequencies {usually swept between a
lower and upper limit), so you also need to measure your standards at all these frequencies of interest.

A full S-parameter test set, such as the ones used in the lab, consists of two transmission-reflection
test sets like the one discussed above, placed back to back. Another coaxial switch selects which end of
the setup receives the test signal. There is no need to flip the device, and this improves measurement
speed and accuracy. The network analyzer contains a comnputer that does all the computations necessary
to determine all the S-parameters, as well as inany other parameters that you might be interested in.

In suinmary, four-port network analyzers measure the S-parameters of two-ports by using a single
vector voltmeter with an arrangement of switches and directional couplers to route the appropriate signals
to the voltmeter. The S-parameters of the measured two-port can be then found from the measured data
after a bit of mathematical manipulation. If you wish {o measure a 3-port or 4-port, typically all but
two ports at a time are terminated in matched impedances and the 2-port measuremenis are repeated
the necessary number of times. IHow many times do you need to repeat a two-port measurement to
characterize a 4-port network?

4.6 Multiport Reflectometry

As we saw in section 4.5, the principle behind most commercial microwave VINAs is that of multiport
reflectometry. There, we postulated the existence of a vector voltmeter without inguiring how such a
device could be realized in practice. In this section we will discuss in detail another related modern
method for reflection coefficient measurement that is also based on the use of interconnected multiports,
but uses time-average power measurements directly rather than through the intermediary of a vector
voltieter. In the process, we will gain deeper insight into the various nonideal factors that are accounted
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for by the calibration process.

Suppose that a microwave oscillator is connected to two directional couplers with fairly small cou-
pling coefficients Cy and €y, and then to an unknown load whose reflection coefficient is p, as shown
in Fig. 4.10. Power detectors, such as diode detectors, are connected to the coupled ports of the direc-

Oscillator iport 1 ) ) port 2
NS f 4 3 L Moad

f match match \

i Directional

§ Couplers |

Pt port3 | i

p, ) = Diode
Detectors

U

Figure 4.10: Four-port reflectometer {the test set is inside the dashed box).

tional couplers. The power detectors, oscillators and directional couplers will be assumed to have small
reflection coefficients, so that P = |Cs|%|a1|? and Py = 1C4|2[51 2. Under these conditions, the ratio of
the measured powers will be

P4 2

—_— = = 4.13
7, qa3lp| (4.13)
where g43 = |C4/C3|? is independent of the unknown reflection coefficient p. If diode detectors are used
to measure power, (4.13) can be replaced hy

y
7 = QP (4.19)

where V3 and Vj are the DC voltages measured at the diode (under zero bias voltage conditions). The
constant (4 now depends on the properties of the directional couplers as well as those of the diodes, but
still not on the unknown p; it is called a calibration constant and can be determined by a calibration
procedure.

For the present case, it is sufficient to connect a short circuit calibration standard to the load port,

for which we know that p = —1. Thus, the measurements of V3 and Vj would give:
V4 -
Q= 74 (4:15)
3 p=—1

We do not need to have the directional couplers or diodes to be made to precise specifications, or even
to be idenlical t¢ each other. As long as the calibration measurement can be made, the constant Q4
can be computed. Onece this is done, the actual load can be connected to the load port, and the diode
voltages measured. From (4.14), the magnitude of p can be determined.
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Unfortunately, this procedure gives no information aboul the phase of p (we have made only a
scalar network ansalyzer so far). To oblain phase information, we must modify the configuration of
our reflectometer. Suppose now that we replace the circuit shown in Fig. 4.10 with the one shown in
Fig. 4.11. Instead of a match. the fourth port of the second coupler is terminated in a shovt circuit whose

Directional
Couplers
Oscillator port 1
NS 3 Load

Adjustable

Short \

p; ) — Diode
Detectors

Figure 4.11: Modilied [our-port refleclomeler.

position is adjustable. We rename the port where power is measured on this coupler to be port 5, to
avoid confusion with the previous configuration. If the coupling coefficients of the directional couplers
are again assumed io be small, then the ratio of the two diode voliages will have the form

Ve .
A Qslp — /%5

2
= 4.16

where (05 and the angle ¢ are calibration constants. The phase angle ¢5 is dependent on the path length
difference between @y and by due to the routes they travel on the main line and on the coupled line.
All that really matters is that all calibration constants are independent of the load reflection coeflicient,
and can be determined by calibration measurements (the details of which we will postpone until a little
later).

To simplify our equations somewhat, we introduce the notation

Ap=-2 n=4,5... (4.17)

for ratios of measured voltages {these are real and > 0). If the calibration constants Q5 and ¢s are
known, then (4.16) says that the unknown p lies on a circle in the complex plane, centered at p; = 7%
and having a radius

=2 = Ry (4.18)
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If this information is combined with that from (4.14), which says that p lies on a circle centered al the

origin with a radins
[ Aq
—=Ah 4.19
Q4 ‘ (4:19)

we conclude that p must be located at one of the infersection points of these two circles. To resolve
the question of which intersection is the correct one, we must take a further measurement, replacing the
circuit of Fig. 4.11 with a similar one, wherein the short circuit is adjusted so as to give a different phase
angle ¢g. Since the diode and directional coupler properties may also be different, we have

Ag = Qslp — e7%}* (4.20)
meaning that p is located on yet a third circle, centered at pg = €79 and with a radius

%ﬁg = Ry (4.21)

The intersection of the three circles thus determines both the magnitude and phase of p uniquely, as
shown in Fig. 4.12.

Figure 4.12: Intersection of three circles to determine complex p.

We do not need to use three different experimental configurations to make our measurements. All
three can be combined into one circuit, as shown in Fig. 4,13, If this is done, there can arise significant

Qscillator

©

Figure 4.13: Six-port. refllectometer.

deviations from the assumptions we made in deriving our equations. For example, the directional couplers
can reintroduce some of the sampled waves back into the main line, thus modifying what we are trying
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to measure. For this reason, we have 1o modify the equations {4.14) {4.16) and (4.20) 1o allow the
cenlers of these circles in the complex p-plane to be at arbilrary locations py, ps and pg, so that for the
reflectometer in Fig, 4.13 they take the form

A
lp— pnl* = Q—" =R%;,  n=4,56 (4.22)
T

for sone positive real calibration constants @4, @5 and (s, and some complex calibration constants ps,
ps and pg, all independent of the load refiection coefficient p.

If the calibration constants in (4.22) are known, we have three real equations for two real unknowns
(the real and imaginary parts of p = u+jv). Experimental error will always result in the three circles not
intersecting exactly, but merely coming close to doing so. The extent to which they do not all intersect
at the same point is one measure of the error in determining the reflection coefficient. Indeed, drawing
the three circles on a graph (a Smith chart will do nicely, but is nol necessary) and locating their near
intersection point is one way to compute p [rom the measured dala. This process can be automated
using an optimization technique such as “least squares” solution of (4.22). However, the determination
of p in this way is scinewhat arbitrary, since the choice of error criterion that gives a “best fit” solution
of (4.22) can be made in many different ways. A more systeinatic approach is to find the radical center of
the three circles, as we will now describe. Once this is done it is a good idea to substitute the calculated
value of p back into the original equations to check that a good solutien has indeed been found, and to
estimate the experimental error.

Radical
Center

Radical

Figure 4.14: Radical axes and radical center of three circles in the complex p-plane.

If we take a closer look at the near intersection of the three circles, we have the situation shown in
Fig. 4.14. A straight line drawn through the intersection poiuts of any pair of circles is called the radical
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axis of that pair of circles. A theorem of geometry tells us that the three radical axes generated by our
three circles must all inlersect in a single point, if the centers py, ps and pg of the circles are all different.
This peint is called the radical center of the three circles, and from Fig. 4.14 we can see that it isin a
certain sense the best fit solution of equations (4.22). It can be calculated by first deriving the equation
for a typical radical axis, say the one for the circles centered at p4 and ps. We have

(w—uw) +(w-w) =R  (u—us)+(w—uvs) =RZ (4.23)
Subtracting these two equations and rearranging gives an equation for the radical axis:

e (itg — us) +o{ve —og) = KN4 — K {4.24)
where ) , . R )
Uy + U — Rn . Ipn[ - R‘n. .

2 2

In a similar way, the equation for the radical axis of the circles centered at p5 and pg is

K, = n=4,5,6 (4.25)

ulus —ug) +vvs —vg) = K5 — K (4.26)

and the radical center is found by solving (4.24) and (4.26) using determinants:

Ny N,
_Na =N 427
Y= vT T (4.27)

where N,,, IV, and D are the matrix determinants

o I(g — K Vg — Us - - 'lb;',) (I( - K )
wemae| ) ] mee T RG] e

and

D = det { (ug = us) (v —vs) ] (4.29)
(us —us) (v5 —vg)

Equation (4.27) is ready Lo use once the calibralion constants are found: u,,, v, and Q,, are known from

calibration, and A, (and therefore R, and K,) are known from measurement. The resuiting value of

p =+ jv should be substituted back into (4.22} to check the accuracy of the solution.

The calibration constants have to be determined by a calibration procedure, just as with any network
analyzer. Because there are more calibration constants to determine than when we assumed pa =0 and
that p5 and pg lie on the unit circle, more calibration measurements and calculations will have to be
done than in that case, but the resulting value found for an unknown p will be more accurate. Because
there are three real quantities (one real @, and one complex p,) for each n to be determined in (4.22),
it would seern that three calibration standards will have Lo be measured, giving three conditions to be
satisfied for @,, and p, for each » = 4,5,6. However, we encounter a situation similar to the one above
when finding the unknown load refloction coefficient p, in that three cal standards will give two possible
solutions for the calibration constants, and an extra cal standard is needed to resolve this ambiguity.

Let our first three cal standards have known values of reflection coefficient Pa = Ug+ Vs, Pp = Up+ Vb
and pe = U + v (chosen in some convenient way), and let the final cal standard be a matched load
(pa = 0). If we denote the corresponding measured values of A,, (for each n = 4,5,6) by Ana, Any, Ang
and Ang. then at each port n, {4.22) gives four separate equations

Ana

|pa — pal® = G n=456 (4.30)
T
A
loo — pul® = Q—’“’; n=4,56 (4.31)
n
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An
iPc”Pn|2 = QC; n=4,50 (4.32)
A‘H
|pn|? = 6—" n=4,5,6 (4.33)
T

for determining @, and pp, subject to the additional constraint that @, > 0. We can temporarily
eliminate @, from these equations by dividing each of (4.30)-(4.32) by (4.33), giving:

A
oo = oul” = £ lpul”s n=4,5,6 (4.34)
nd

An :
oy — pnl” = A_Z loal®; n=4,5,6 (4.35)
T

n=4,56 (4.36)

A
2 i*nc
|Pe = pal = And

Some algebra will show that (4.34)-(4.36) can be rewritten as

And 2 AnaAnd
—md | = —mermd n=4,50 437
Pn Ay — Anap (B — na)o lp i ( )
And 2 AnbAnd 2
T eee—— =—_— ; =456 4.38
P And - Anb P (And o Anb)d Ipbl ( )

P — Ang P : — AncAnad |P |2 s
" And - Anc ¢ (And - Anc)z o
It will be seen that these equations arc circles in the complex p.-plane in the same forin as (4.22),

although now the unknown is py,, while pa, b, Pe, Ana, Anp; Ane and Ayg are known.
‘We may thus use the same method as before to find the p,. After some algebra we arrive at

n=4,56 (4.39)

N, N,
Uy = E;‘:; Uy = Dn (4.40)
where Ny, Nyn and D, are the matrix determinants
I ( !paIQ . ;pbiz ) ( Ve _ Up i
And — Amp Apg — A Apag—Anp
A ' — d t na T T T2 na T 4‘41
wn = gie ( "oyt loef? ) ( v v ) (4:41)
rld - nb nd - Anc A—nd‘. - A-nb And A-nc
( L w ) ( ol Imf? )
1 - A A A MAa—A
o nd na mi 1h 7ied na nd b 4.49
Ny = g det ( e ) ( oof? e ) (1-42)
And - nd - Anc And - Anb And e Anc |
and
Ug _ up Va _ Uy
— And - Ana And - Anb And_ - Anu And, - A—nb
n = det 0 - ” B Ve {4.43)
Anu! - Anb Aml - Anc Ana! o Anb And - Anr:
With p, = uy, + ju, now determined, we obtain @, from (4.33):
Qn = St (4.44)
ol




4.7. PRACTICE QUESTIONS 89

Once again, it is important o verify that the original equations (4.30)-(4.32) are accurately satisfied
once the computation of the calibration constanis has been completed. I may be necessary to adjust
the positions of the sliding shorts in the six-port network in order to be able to obtain a more accurate
calibration.

To summarize, we must first perform calibration measurements and use equations {(4.40) and (4.44) to
evaluate the calibration constants. Then the DUT is connected and measured, from which we determine
the real and imaginary parts of the unknown p using (4.27).

4.7 Practice questions

1.

10.

11,

13.

14.

15.

Show that a four port network can satisfy the matched, reciprocal and lossless conditions simulta-
neously.

. Show that the ideal isolator is lossy.
. Show that the ideal phase shifter is lossless.

. Write down the scattering matrix of an ideal lumped element low-pass filter in the (a) pass band

and (b) stop band. Repeat for a transmission-line low-pass filter such as in Fig. 4.1(c).

. Write down the scattering matrix for a 3-dB directional coupler for which the two non-isolated

outputs are in phase quadrature.

. How does odd and even mode decomposition work? What kind of a network do you have to have

in order to be allowed to use odd and even mode decomposition?

. Sketch the odd and even mode cireuits of a microstrip branch line coupler.

Sketch the odd and even mode circuits of a Wilkinson power divider, shown in Figure 4.2(d).

. What are the impedances of A/8-long short and opened stubs of characteristic impedance Z?

Apply results from question #£10 to calculating the odd and even mode reflection and transmission
coeflicients for the Lranch line directional coupler {pg, pe, To; Te)-

I{ you had a 20-dB directional coupler, how could you use it to measure a reflection coefficient?

. Sketch the four-port reflectometer part of a network analyzer. Why do you need the linear 4-port?

Write down the calibration procedure (find the coustants A, B and C) for a short-open-load cali-
bration. How would you do a calibration if you only had one of the standards, say the short?

The network analyzer has 2 coaxial cables coming out of it. These are two ports. How would you
mneasurc the paramneters of a three-port circuit using the network analyzer? How would you fully
characterize a four-port device using a two-port network analyzer?

For three mutually intersecting circles as shown in Fig. 4.14, each pair of circles intersects at two
points. Show that if the three radical axes are not parallel to each other, they intersect at a single
point, which can be used as a best fit to the equations described by the three circles.



